Skip to main content

Optical Properties of Skin Surface

  • Living reference work entry
  • First Online:
Measuring the Skin

Abstract

The interactions of light with the skin surface are controlled by its intrinsic optical properties. In this chapter, we examine these properties from a first-principles point of view, i.e., we focus on the main light-attenuation agents acting within healthy cutaneous tissues. The mechanisms of light attenuation, namely, scattering and absorption, alter the spatial and spectral profiles of the light traveling within the various skin layers. Accordingly, we review the roles of scatterers and absorbers present in the skin tissues with respect to their spatial and spectral light-attenuation domains and discuss their interplay through light sieve and detour effects. We also concisely describe the roles of key light-emission (fluorescence) agents found in the skin tissues. The chapter closes with an overview of practical challenges related to the advance of research on skin optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

COHb:

Carboxyhemoglobin

HHb:

Deoxyhemoglobin

MetHb:

Methemoglobin

NADH:

Nicotinamide adenine dinucleotide

O2Hb:

Oxyhemoglobin

SHb:

Sulfhemoglobin

UVR:

Ultraviolet radiation

References

  • Alaluf S, Heath A, Carter N, Atkins D, Mahalingam H, Barrett K, et al. Variation in melanin content and composition in type V and type VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res. 2001;14:337–47.

    Article  CAS  PubMed  Google Scholar 

  • Alaluf S, Heinrich U, Stahl W, Tronnier H, Wiseman S. Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J Nutr. 2002a;132:399–403.

    CAS  PubMed  Google Scholar 

  • Alaluf S, Atkins D, Barret K, Blount M, Carter N, Heath A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res. 2002b;15:112–8.

    Article  CAS  PubMed  Google Scholar 

  • Alaluf S, Atkins D, Barret K, Blount M, Carter N, Heath A. The impact of epidermal melanin on objective measurements of human skin color. Pigment Cell Res. 2002c;15:119–26.

    Article  CAS  PubMed  Google Scholar 

  • Altshuler GB, Anderson RR, Manstein D, inventor; The General Hospital Corp., Palomar Medical Technologies, Inc., assignee. Method and apparatus for the selective targeting of lipid-rich tissues. United States Patent US 6605080 B1. 12 Aug 2003.

    Google Scholar 

  • Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  • Anderson RR, Parrish JA. Optical properties of human skin. In: Regan JD, Parrish JA, editors. The science of photomedicine. New York: Plenum Press; 1982. p. 147–94.

    Chapter  Google Scholar 

  • ANSI. Nomenclature and definitions for illuminating engineering. New York: Illuminating Engineering Society of North America; 1986. Report No.: ANSI/IES RP-6-1986.

    Google Scholar 

  • Baranoski GVG, Krishnaswamy A. Light and skin interactions simulations for computer graphics applications. Amsterdam: Morgan Kaufmann; 2010.

    Google Scholar 

  • Baranoski GVG, Krishnaswamy A, Kimmel B. An investigation on the use of data-driven scattering profiles in Monte Carlo simulations of ultraviolet light propagation in skin tissues. Phys Med Biol. 2004;49:4799–809.

    Article  CAS  PubMed  Google Scholar 

  • Baranoski GVG, Krishnaswamy A, Kimmel B. Increasing the predictability of tissue subsurface scattering simulations. Visual Comput. 2005;21(4):265–78.

    Article  Google Scholar 

  • Baranoski GVG, Chen TF, Kimmel B, Miranda E, Yim D. On the noninvasive optical monitoring and differentiation of methemoglobinemia and sulfhemoglobinemia. J Biomed Opt. 2012;17(9):097005. -1-14.

    Article  Google Scholar 

  • Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys. 2005;38:2543–55.

    Article  CAS  Google Scholar 

  • Bendit EG. Infrared absorption spectrum of keratin. I. Spectra of α-, β-, and supercontracted keratin. Biopolymers. 1966;4:539–59.

    Article  CAS  PubMed  Google Scholar 

  • Bruls WAG, van der Leun JC. Forward scattering properties of human epidermal layers. Photochem Photobiol. 1984;40:231–41.

    Article  CAS  PubMed  Google Scholar 

  • Butler WL. Absorption spectroscopy in vivo: theory and application. Annu Rev Plant Phys. 1964;15:451–70.

    Article  CAS  Google Scholar 

  • Chan D, Schulz B, Gloystein K, Müller HH, Rübhausen M. In vivo spectroscopic ellipsometry measurements on human skin. J Biomed Opt. 2007;12(1):014023. -1-6.

    Article  PubMed  Google Scholar 

  • Chedekel MR. Photophysics and photochemistry of melanin. In: Zeise L, Chedekel MR, Fitzpatrick TB, editors. Melanin: its role in human photoprotection. Overland Park: Valdenmar Publishing Company; 1995. p. 11–22.

    Google Scholar 

  • (CIE 2011) Commission Internationale de L’Eclairage. ILV: international lighting vocabulary, new. Vienna, Austria: CIE Central Bureau. 2011. Report No.: CIE S 017/E:2011.

    Google Scholar 

  • Clendening B. UV Spectrophotometric analysis of DNA and RNA. Hofstra University; Hempstead, New York, USA; 2002.

    Google Scholar 

  • Cunnington AJ, Kendrick SW, Wamola B, Lowe B, Newton CRJC. Carboxyhemoglobin levels in Kenyan children with Plasmodium Falciparum malaria. Am J Trop Med Hyg. 2004;71(1):43–7.

    CAS  PubMed  Google Scholar 

  • Darvin ME, Gersonde I, Meinke M, Sterry W, Lademann J. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method. J Phys D Appl Phys. 2005;38:2696–700.

    Article  CAS  Google Scholar 

  • Diffey BL. Ultraviolet radiation physics and the skin. Phys Med Biol. 1980;25(3):405–26.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers A, Riemann I, Anhut T, Kaatz M, Elsner P, König K. Fluorescence lifetime imaging of human skin and hair. In: Periasamy A, So PTC, editors. Multiphoton microscopy in the biomedical sciences VI. San Jose: SPIE; 2006. p. 60890N-1-10.

    Google Scholar 

  • Federici JF, Guzelsu N, Lim HC, Jannuzzi G, Findley T, Chaudhry HR, Ritter AB. Noninvasive light-reflection technique for measuring soft-tissue stretch. Appl Optics. 1999;38(31):6653–60.

    Article  CAS  Google Scholar 

  • Feynman RP, Leighton RB, Sands M. The Feynman lectures on physics, vol. 1. Reading: Addison-Wesley Publishing Company; 1964.

    Google Scholar 

  • Flewelling R. Noninvasive optical monitoring. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton: IEEE Press; 1995. p. 1346–56.

    Google Scholar 

  • Fukshansky L. Optical properties of plants. In: Smith H, editor. Plants and the daylight spectrum. London: Academic; 1981. p. 21–40.

    Google Scholar 

  • Gharahbaghian L, Massoudian B, DiMassa G. Methemoglobinemia and sulfhemoglobinemia in two pediatric patients after ingestion of hydroxylamine sulfate. West J Emerg Med. 2009;10(3):197–201.

    PubMed  PubMed Central  Google Scholar 

  • Gilles R, Zonios G, Anderson RR, Kollias N. Fluorescence excitation spectroscopy provides information about human skin in vivo. J Invest Dermatol. 2000;115(4):704–7.

    Article  Google Scholar 

  • Gopalacharand AS, Bowie VL, Bharadwaj P. Phenazopyridine-induced sulfhemoglobinemia. Ann Pharmacother. 2005;39(6):1128–30.

    Article  Google Scholar 

  • Hawk JLM, Parrish JA. Responses of normal skin to ultraviolet radiation. In: Regan JD, Parrish JA, editors. The science of photomedicine. New York: Plenum Press; 1982. p. 219–60.

    Chapter  Google Scholar 

  • Haymond S, Cariappa R, Eby CS, Scott MG. Laboratory assessment of oxygenation in methemoglobinemia. Clin Chem. 2005;51(2):434–44.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy A, Oh C, Diffey B, Wakamatsu K, Ito S, Rees J. Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Res. 2005;18:220–3.

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zeng H, Hamzavi I, Alajlan A, Tan E, McLean AI, et al. Cutaneous melanin exhibiting fluorescence emission under near-infrared light excitation. J Biomed Opt. 2006;11(3):034010. -1-6.

    Article  Google Scholar 

  • Hunter RS, Harold RW. The measurement of appearance. 2nd ed. New York: Wiley; 1987.

    Google Scholar 

  • Jacques SL. Origins of tissue optical properties in the UVA, visible and NIR regions. In: Alfando RR, Fujimoto JG, editors. OSA TOPS on advances in optical imaging and photon migration. 2nd ed. Washington, DC: Optical Society of America; 1996. p. 364–9.

    Google Scholar 

  • Jacques SL. Optical absorption of melanin. Oregon Medical Laser Center; Portland, Oregon, USA; 2001.

    Google Scholar 

  • Jacques SL, Alter CA, Prahl SA. Angular dependence of HeNe laser light scattering by human dermis. Laser Life Sci. 1987;1(4):309–33.

    Google Scholar 

  • Jacquez JA, Huss J, McKeehan W, Dimitroff J, Kuppenheim HF. Spectral reflectance of human skin in the region 235–700 μ. J Appl Physiol. 1955a;8:212–4.

    CAS  PubMed  Google Scholar 

  • Jacquez JA, Kuppenheim F, Dimitroff M, McKeehan W, Huss J. Spectral reflectance of human skin in the region 0.7–2.6 μ. J Appl Physiol. 1955b;8:297–9.

    CAS  PubMed  Google Scholar 

  • Kochevar I, Taylor R, Kritmann J. Fundamentals of cutaneous photobiology and photoimmunology. In: Wolff K, Goldsmith LA, Katz S, editors. Fitzpatrick’s dermatology in general medicine. New York: McGraw Hill; 2008. p. 152–8.

    Google Scholar 

  • Kollias N. The spectroscopy of human melanin pigmentation. In: Zeise L, Chedekel MR, Fitzpatrick TB, editors. Melanin: its role in human photoprotection. Overland Park: Valdenmar Publishing Company; 1995. p. 31–8.

    Google Scholar 

  • Kollias N, Baqer A. On the assessment of melanin in human skin in vivo. Photochem Photobiol. 1986;43(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  • Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9:135–60.

    Article  CAS  PubMed  Google Scholar 

  • Kollias N, Gilles R, Moran M, Kochevar IE, Anderson RR. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol. 1998;111(5):776–80.

    Article  CAS  PubMed  Google Scholar 

  • Kölmel KF, Sennhenn B, Giese K. Investigation of skin by ultraviolet remittance spectroscopy. Brit J Dermatol. 1990;122:209–16.

    Article  Google Scholar 

  • Kramer K, Elam JO, Saxton GA, Elam Jr WN. Influence of oxygen saturation, concentration and optical depth upon the red and near-infrared light transmittance of whole blood. Am J Physiol. 1951;165(1):229–46.

    CAS  PubMed  Google Scholar 

  • Latimer P. A wave-optics effect which enhances light absorption by chlorophyll in vivo. Photochem Photobiol. 1984;40(2):193–9.

    Article  CAS  Google Scholar 

  • Latimer P, Eubanks CAH. Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions. Arch Biochem Biophys. 1962;98:274–85.

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Mathews-Roth MM, Pathak MA, Parrish JA. The detection of carotenoid pigments in human skin. J Invest Dermatol. 1975;64:175–7.

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng C, et al. Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol. 2005;81:135–44.

    Article  CAS  PubMed  Google Scholar 

  • Lopez H, Beer JZ, Miller SA, Zmudzka BZ. Ultrasound measurements of skin thickness after UV exposure: a feasibility study. J Photochem Photobiol B. 2004;73:123–23.

    Article  CAS  PubMed  Google Scholar 

  • Lovell AT, Hebden JC, Goldstone JC, Cope M. Determination of the transport scattering coefficient of red blood cells. In: Chance B, Alfano RR, Tromberg BJ, editors. Optical tomography and spectroscopy of tissue III. San Jose: SPIE; 1999. p. 175–82.

    Chapter  Google Scholar 

  • Magnenat-Thalmann N, Kalra P, Lévêque JL, Bazin R, Batisse D, Querleux B. A computational skin model: fold and wrinkle formation. IEEE Trans Inf Technol B. 2002;6(4):317–23.

    Article  Google Scholar 

  • McCartney EJ. Optics of the atmosphere: scattering by molecules and particles. New York: Wiley; 1976.

    Google Scholar 

  • McCluney R. Introduction to radiometry and photometry. Boston: Artech House; 1994.

    Google Scholar 

  • Na R, Stender I, Henriksen M, Wulf HC. Autofluorescence spectrum of skin: component bands and body site variations. Skin Res Technol. 2000;6:112–7.

    Article  PubMed  Google Scholar 

  • Na R, Stender I, Henriksen M, Wulf HC. Autofluorescence of human skin is age-related after correction for skin pigmentation and redness. J Invest Dermatol. 2001;116(4):536–40.

    Article  CAS  PubMed  Google Scholar 

  • Olivarius FF, Wulf HC, Therkildsen P, Poulsen P, Crosby J, Norval M. Uranic acid isomers: relation to the body site, pigmentation, stratum corneum thickness and photosensitivity. Arch Dermatol Res. 1997;289:501–5.

    Article  Google Scholar 

  • Olson L, Gaylor J, Everett MA. Skin color, melanin, and erythema. Arch Dermatol. 1973;108:541–4.

    Article  CAS  PubMed  Google Scholar 

  • Oudhia A. UV-VIS spectroscopy as a nondestructive and effective characterization tool for II-VI compounds. Recent Res Sci Technol. 2012;4(8):109–11.

    CAS  Google Scholar 

  • Palmer KF, Williams D. Optical properties of water in the near infrared. J Opt Soc Am. 1974;64(8):1107–10.

    Article  CAS  Google Scholar 

  • Parsad D, Wakamatsu K, Kanwar AJ, Kumar B, Ito S. Eumelanin and phaeomelanin contents of depigmented and repigmented skin in vitiligo patients. Brit J Dermatol. 2003;149:624–6.

    Article  CAS  Google Scholar 

  • Pittman RN. In vivo photometric analysis of hemoglobin. Ann Biomed Eng. 1986;14(2):1416–32.

    Article  Google Scholar 

  • Pope RM, Fry ES. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Optics. 1997;36(33):8710–23.

    Article  CAS  Google Scholar 

  • Prahl SA. Optical absorption of hemoglobin. Oregon Medical Laser Center; Portland, Oregon, USA; 1999.

    Google Scholar 

  • Prahl SA. PhotochemCAD spectra by category. Oregon Medical Laser Center; Portland, Oregon, USA; 2001.

    Google Scholar 

  • Prahl SA. Optical absorption of fat. Oregon Medical Laser Center; Portland, Oregon, USA; 2004.

    Google Scholar 

  • Rabinowitch EI. Light absorption by pigments in the living cell. In: Photosynthesis and related processes. 2nd vol. Part 1. New York: Interscience Publishers; 1951. p. 672–739.

    Google Scholar 

  • Randeberg LL, Bonesrønning JH, Dalaker M, Nelson JS, Svaasand LO. Methemoglobin formation during laser induced photothermolysis of vascular skin lesions. Laser Surg Med. 2004;34(5):414–9.

    Article  CAS  Google Scholar 

  • Riesz J, Gilmore J, Meredith P. Quantitative scattering of melanin solutions. Biophys J. 2006;90:4137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolinsky B, Küster H, Ugele B, Gruber R, Horn K. Total bilirubin measurement by photometry on a blood gas analyser: potential for use in neonatal testing at point of care. Clin Chem. 2001;47(10):1845–7.

    Google Scholar 

  • Saidi IS. Transcutaneous optical measurement of hyperbilirubinemia in neonates [dissertation]. Houston: Rice University; 1992.

    Google Scholar 

  • Sandoz P, Marsaut D, Armbruster V, Humbert P, Gharbi T. Towards objective evaluation of skin aspect: principles and instrumentation. Skin Res Technol. 2004;10:263–70.

    Article  PubMed  Google Scholar 

  • Sardar DK, Mayo ML, Glickman RD. Optical characterization of melanin. J Biomed Opt. 2001;6(4):404–11.

    Article  CAS  PubMed  Google Scholar 

  • Schaaf D, Eurell T, Johnson T. Cultured human keratinocytes for optical transmission measurement. J Biophoton. 2010;3(3):161–8.

    Article  Google Scholar 

  • Siggaard-Andersen O, Nørgaard-Pedersen B, Rem J. Hemoglobin pigments. spectrophotometric determination of oxy-, carboxy-, met-, and sulfhemoglobin in capillary blood. Clin Chim Acta. 1972;42(1):85–110.

    Article  CAS  PubMed  Google Scholar 

  • Sinichkin YP, Utz SR, Mavliutov AH, Pilipenko HA. In vivo fluorescence spectroscopy of the human skin: experiments and models. J Biomed Opt. 1998;3(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  • Sohaib A, Farooq AR, Atkinson GA, Smith LN, Smith ML, Warr R. In vivo measurement of skin microrelief using photometric stereo in the presence of interreflection. J Opt Soc Am A. 2013;30(3):278–86.

    Article  Google Scholar 

  • Sthal W, Sies H. Carotenoids in systemic protection against sunburns. In: Krisnky N, Mayne ST, Sies H, editors. Carotenoids in health and disease. Boca Raton: CRC Press; 2004. p. 201–11.

    Google Scholar 

  • Sutherland JC, Griffin KP. Absorption spectra of DNA for wavelengths greater than 300 nm. Radiat Res. 1981;86:399–409.

    Article  CAS  PubMed  Google Scholar 

  • Swanbeck G. On the keratin fibrils of the skin. J Ultra R. 1959;3:51–7.

    Article  CAS  Google Scholar 

  • Szabó G, Gerald AB, Pathak MA, Fitzpatrick TB. Racial differences in the fate of melanosomes in human epidermis. Nature. 1969;222:1081–2.

    Article  PubMed  Google Scholar 

  • Thody AJ, Higgins EM, Wakamatsu K, Ito S, Burchill SA, Marks JM. Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol. 1991;97:340–4.

    Article  CAS  PubMed  Google Scholar 

  • Toda K, Pathak MA, Parrish JA, Fitzpatrick TB. Alteration of racial differences in melanosome distribution in human epidermis after exposure to ultraviolet light. Nat New Biol. 1972;236:143–5.

    Article  CAS  PubMed  Google Scholar 

  • Tuchin VV. Tissue optics light scattering methods and instruments for medical diagnosis. 2nd ed. Bellingham: The International Society for Optical Engineering; 2007.

    Google Scholar 

  • van de Graaff KM. Human anatomy. 4th ed. Dubuque: William C Brown; 1995.

    Google Scholar 

  • van Veen RLP, Sterenborg HJCM, Pifferi A, Torricelli A, Cubeddu R. Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy. In: Biomed Topical Meeting. Miami Beach: Optical Society of America; 2004. p. SF4.

    Google Scholar 

  • Williams ML, Hincenbergs M, Holbrook KA. Skin lipid content during early fetal development. J Invest Dermatol. 1988;91:263–8.

    Article  CAS  PubMed  Google Scholar 

  • Yarynovska IH, Bilyi AI. Absorption spectra of sulfhemoglobin derivatives of human blood. In: Cote GL, Priezzhev AV, editors. Optical diagnostics and sensing VI. San Jose: SPIE; 2006. p. 1–6.

    Google Scholar 

  • Yim D, Baranoski GVG, Kimmel BW, Chen TF, Miranda E. A cell-based light interaction model for human blood. Comput Graph Forum. 2012;31(2):845–54.

    Article  Google Scholar 

  • Young AR. Chromophores in human skin. Phys Med Biol. 1997;42:789–802.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladimir V. G. Baranoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Baranoski, G.V.G., Chen, T.F. (2015). Optical Properties of Skin Surface. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics