Skip to main content

Measuring Skin Cell Stiffness

  • Living reference work entry
  • First Online:
Agache’s Measuring the Skin

Abstract

The mechanical behavior of cells is connected to cell functions involving the cytoskeleton, like contractility, motility, and proliferation, which are essential for the skin’s homeostasis.

Changes in mechanical properties are an important characteristic of the aging process of the human skin. Studies attribute these changes predominately to the extracellular matrix (ECM) due to its altered collagen and elastin organization and density. Nevertheless, individual skin cells can also show significant changes in stiffness, which can be measured by sophisticated tools like the laser-based optical cell stretcher that allows examining the viscoelastic biomechanics of isolated cells. As compared to other techniques for single cell elasticity measurements such as scanning-force microscopy (SFM), an optical stretcher enables the measurement of more than a hundred cells per hour providing advanced statistical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

SFM:

Scanning-force microscopy

References

  • Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24(4):156–9.

    Article  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM. Radiation pressure on a free liquid surface. Phys Rev Lett. 1973;30(4):139–42.

    Article  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330(6150):769–71.

    Article  CAS  PubMed  Google Scholar 

  • Bereiter-Hahn J, Lüers H. In: Akkas N, editor. Biomechanics of active movement and division of cells. Berlin: Springer; 1994. p. 181–230.

    Chapter  Google Scholar 

  • Boudou T, Ohayon J, Picart C, Pettigrew RI, Tracqui P. Nonlinear elastic properties of polyacrylamide gels: implications for quantification of cellular forces. Biorheology. 2009;46(3):191–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RA, Talas G, Porter RA, McGrouther DA, Eastwood M. Balanced mechanical forces and microtubule contribution to fibroblast contraction. J Cell Physiol. 1996;169(3):439–47.

    Article  CAS  PubMed  Google Scholar 

  • Fabry B, et al. Scaling the microrheology of living cells. Phys Rev Lett. 2001;87(14):148102.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez P, Heymann L, Ott A, Aksel N, Pullarkat PA. Shear rheology of a cell monolayer. New J Phys. 2007;9:419.

    Article  Google Scholar 

  • Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463(7280):485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fluck M, Giraud M-N, Tunc V, Chiquet M. Tensile stress-dependent collagen XII and fibronectin production by fibroblasts requires separate pathways. Biochim Biophys Acta. 2003;1593:239–48.

    Article  CAS  PubMed  Google Scholar 

  • Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Käs J. Optical deformability of soft biological dielectrics. Phys Rev Lett. 2000;84(23):5451–4.

    Article  CAS  PubMed  Google Scholar 

  • Hertz H. Über die Berührung fester elastischer Körper. J Reine Angew Math. 1881;92:156–71.

    Google Scholar 

  • Hochmuth RM. Micropipette aspiration of living cells. J Biomech. 2000;33:15–22.

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physol. 1997;59:575–99.

    Article  CAS  Google Scholar 

  • Janmey PA, Weitz DA. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci. 2004;29(7):364–70.

    Article  CAS  PubMed  Google Scholar 

  • Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B. Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem. 2001;237:159–72.

    Google Scholar 

  • Kollmannsberger P, Fabry B. Active soft glassy rheology of adherent cells. Soft Matter. 2009;5:1771–4.

    Article  CAS  Google Scholar 

  • Kolodney MS, Wysolmerski RB. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol. 1992;117:73–82.

    Article  CAS  PubMed  Google Scholar 

  • Mahaffy RE, Shih CK, MacKintosh FC, Käs J. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett. 2000;85(4):880–3.

    Article  CAS  PubMed  Google Scholar 

  • Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000;78(1):520–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G, Jaspers S, Blatt T, Wittern KP, Wenck H, Käs JA. Stiffening of human skin fibroblasts with age. Biophys J. 2010;99(8):2434–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semmrich C, Storz T, Glaser J, Merkel R, Bausch AR, Kroy K. Glass transition and rheological redundancy in F-actin solutions. Proc Natl Acad Sci U S A. 2007;104(51):20199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleep J, Wilson D, Simmons R, Gratzer W. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J. 1999;77:3085–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung KL, Yang L, Whittemore DE, Shi Y, Jin G, Hsieh AH, Akeson WH, Sung LA. The differential adhesion forces of anterior cruciate and medial collateral ligament fibroblasts: effects of tropomodulin, talin, vinculin, and alpha-actinin. Proc Natl Acad Sci U S A. 1996;93(17):9182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward KA, Li WI, Zimmer S, Davis T. Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology. 1991;28:301–13.

    CAS  PubMed  Google Scholar 

  • Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Käs J. Optical rheology of biological cells. Phys Rev Lett. 2005a;94(9):098103.

    Article  PubMed  Google Scholar 

  • Wottawah F, Schinkinger S, Lincoln B, Ebert S, Müller K, Sauer F, Travis K, Guck J. Characterizing single suspended cells by optorheology. Acta Biomater. 2005b;1(1):263–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Schulze, C., Jaspers, S. (2015). Measuring Skin Cell Stiffness. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Agache’s Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_147-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_147-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics