Skip to main content

Skin Viscoelasticity by Acoustic Velocity and Dispersion: Effects of Tension in Stratum Corneum

  • Living reference work entry
  • First Online:
Measuring the Skin

Abstract

Aging, photoaging, dryness, and skin thickness (following a proliferative response) play an important role in changes or loss of skin elasticity. Although the changes in the mechanical properties of the skin have proved to be difficult to document but not impossible. It is very important to mention that the mechanical properties of the skin are not uniform in all directions, and there is a need to understand this angular anisotropy. We can document skin anisotropy by measuring the propagation time of a shear wave between two piezoelectric transducer sensors placed on the surface of the skin. Based on velocity and dispersion of the acoustic waves, we can obtain information about local density and tension of the tissue. We find that with increasing age, the anisotropy increases, while the angular dispersion width decreases. The ratio of these values provides a sensitive parameter for the assessment of the directional behavior of the skin mechanical properties. This parameter provides a large effective dynamic range capable of demonstrating close to an order of magnitude difference in skin viscoelasticity from infants up to 75 years of age. Also the direction of the angular anisotropy relates to the direction of the dermal cleavage lines as defined by Langer. Topical application of moisturizers can change the stratum corneum tension, plasticize the stratum corneum, and decrease the tensions induced by skin dryness. This methodology is most sensitive to the density and tension supported by the superficial layers of the skin: the stratum corneum and the viable epidermis.

Nikiforos Kollias has retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ASTM. D2240-03 standard test method for rubber property – durometer hardness. West Conshohocken: ASTM International; 2003.

    Google Scholar 

  • Biscoe B, Sebastian K. Analysis of the “durometer” indentation. Rubber Chem Technol. 1993;66:827–36.

    Article  Google Scholar 

  • Cox H. The cleavage lines of the skin. Br J Surg. 1942;29:234–40.

    Article  Google Scholar 

  • Dahlgren R, Elsnau W. Measurement of skin condition by sonic velocity. J Soc Cosmet Chem. 1986;35:1–9.

    Google Scholar 

  • Dorogi PL, DeWitt GM, Stone BR, Buras Jr EM. Viscoelastometry of skin in vivo using shear wave propagation. Bioeng Skin. 1986;2:59–70.

    Google Scholar 

  • Doukas AG, Soukos NS, Babusis S, Appa Y, Kollias N. Fluorescence excitation spectroscopy for the measurement of epidermal proliferation. Photochem Photobiol. 2001;74(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  • Elsner P. Skin elasticity. In: Bardesca E, Elsner P, Wilhelm K, Maibach H, editors. Bioengineering of the skin: methods and instrumentation. Boca Raton: CRC Press; 1995.

    Google Scholar 

  • Gibson T, Stark H, Evans J. Directional variation in extensibility of human skin in vivo. J Biomech. 1969;2:201–4.

    Article  PubMed  Google Scholar 

  • Jansen L, Rottier PB. Elasticity of human skin related to age. Dermatologica. 1957;115:106–11.

    Article  CAS  PubMed  Google Scholar 

  • Kollias N, Gilles R, Moran M, Kochevar IE, Anderson RR. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol. 1998;111(5):776–80.

    Article  CAS  PubMed  Google Scholar 

  • Langer K. Zur Anatomie und Physiologie der Haut: I. Uber die Splatbarkeit der Cutis. Sitzungber Akad Wiss Wien. 1861;44:19–46.

    Google Scholar 

  • Lavker RM, Zheng PS, Dong G. Aged skin: a study by light, transmission electron, and scanning electron microscopy. J Invest Dermatol. 1987;88:44s–51.

    Article  CAS  PubMed  Google Scholar 

  • Mridha M, Odman S, Oberg PA. Mechanical pulse wave propagation in gel, normal and oedematous tissues. J Biomech. 1992;25:1213–8.

    Article  CAS  PubMed  Google Scholar 

  • Nizet JL, Pierard-Franchimont C, Pierard GE. Influence of body posture and gravitational forces on shear wave propagation in the skin. Dermatology. 2001;202:177–80.

    Article  CAS  PubMed  Google Scholar 

  • Potts RO, Chrisman DA, Burns EM. The dynamic mechanical properties of human skin in vivo. J Biomech. 1983;16:365–72.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L. EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 2: instrumentation and test modes. Skin Pharmacol Appl Skin Physiol. 2001;14:52–67.

    Article  CAS  PubMed  Google Scholar 

  • Russell M, Lee C, Ruvolo E. Stratum corneum hydration and barrier benefits with glycerin on xerotic skin. Proceedings of Stratum Corneum VII. Cardiff, UK. 2012.

    Google Scholar 

  • Ruvolo Jr E, Kollias N. Assessment of mechanical properties of skin by shear wave propagation and acoustic dispersion. In: Berardesca E, Maibach H, Wilhelm K, editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 233–50. DOI 10.1007/978-3-642-32109-2_21.

    Chapter  Google Scholar 

  • Ruvolo Jr EC, Stamatas GN, Kollias N. Skin viscoelasticity displays site- and age-dependent angular anisotropy. Skin Pharmacol Physiol. 2007;20:313–21.

    Article  PubMed  Google Scholar 

  • Serup J, Jemec G, Grove G. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press; 2006.

    Book  Google Scholar 

  • Lanir Y. Skin mechanics. In: Skalak R, Chien S, editors. Handbook of bioengineering. New York: MacGraw-Hill; 1986. p. 11.11–24.

    Google Scholar 

  • Stamatas GN, Estanislao RB, Suero M, Rivera ZS, Li J, Khait A, Kollias N. Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age. Br J Dermatol. 2006;154:25–132.

    Article  Google Scholar 

  • Takakuda K, Miyairi H. Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials. 1996;17:1393–7.

    Article  CAS  PubMed  Google Scholar 

  • Tronnier H. Dermatologisch-phamakologische Methoden zur Prüfung kosmeticher Präparate und Grundstoffe. Ärzliche Kosmotogie. 1980;10:361–7.

    Google Scholar 

  • Vexler A, Polyansky I, Gorodetsky R. Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. J Investig Dermatol. 1999;113:732–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Ruvolo, E., Lee, C., Kollias, N. (2015). Skin Viscoelasticity by Acoustic Velocity and Dispersion: Effects of Tension in Stratum Corneum. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_132-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_132-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics