Skip to main content

The Spread of Innovatory Nature Originated Metaheuristics in Robot Swarm Control for Smart Living Environments

  • Chapter
  • First Online:
Nature-Inspired Computing for Control Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 40))

Abstract

The main purpose of introducing ambient assistive living (AAL) robots is to assist the disabled and elderly people at home. In recent years, this field has evolved quickly because of the enormous increase in computing power and availability of the improved variety of sensors and actuators. However, design of AAL robots control system is a huge challenge, which require solving issues related to two classes: design of mechanical structure and development of an efficient control system. In this chapter, we focus on the latter topic, since even relatively low quality hardware can be used for solving sophisticated tasks if the software control it correctly. The chapter starts by giving a vision of what heterogeneous AAL robots is supposed to look like and how a human is to act, navigate and function in it. Particularly, we investigate the effect of artificial neural network (ANN) based control techniques for AAL robots. To enhance the accuracy and convergence rate of ANN, a new method of neural network training is explored, i.e., grey wolf optimization (GWO). Moreover, we provide an overview of applying emerging metaheuristic approaches to various smart robot control scenarios which, from the author’s viewpoint, have a great influence on various AAL robot related activities, such as location identification, manipulation, communication, vision, learning, and docking capabilities. The findings of this work can provide a good source for someone who is interested in the research field of AAL robot control. Finally, we concludes with a discussion of some of the challenges that exist in the AAL robot control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anonymous.: Ambient Assisted Living Roadmap. European Ambient Assisted Living Innovation Alliance. IOS Press, Amsterdam, The Netherland (2010)

    Google Scholar 

  2. Borja, R., de la Pinta, J.R., Álvarez, A., Maestre, J.M.: Integration of service robots in the smart home by means of UPnP: a surveillance robot case study. Robot. Auton. Syst. 61, 153–160 (2013)

    Google Scholar 

  3. Schauer, D., Hein, A., Lueth, T.C.: RoboPoint—an autoclavable interactive miniature robot for surgery and interventional radiology. Int. Congr. Ser. 1256, 555–560 (2003)

    Article  Google Scholar 

  4. Pisla, D., Gherman, B., Vaida, C., Suciu, M., Plitea, N.: An active hybrid parallel robot for minimally invasive surgery. Robot. Comput. Integr. Manuf. 29, 203–221 (2013)

    Article  MATH  Google Scholar 

  5. Yu, H., Huang, S., Chen, G., Thakor, N.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23, 1072–1083 (2013)

    Article  Google Scholar 

  6. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.S.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics (in press)

    Google Scholar 

  7. Banks, M.R., Willoughby, L.M., Banks, W.A.: Animal-assisted therapy and loneliness in nursing homes: use of robotic versus living dogs. J. Am. Med. Directors Assoc. 9, 173–177 (2008)

    Article  Google Scholar 

  8. Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier Inc., London (2014), ISBN 978-0-12-417049-0

    Google Scholar 

  9. Wu, Y.-H., Wrobel, J., Cristancho-Lacroix, V., Kamali, L., Chetouani, M., Duhaut, D., et al.: Designing an assistive robot for older adults: the ROBADOM project. IRBM 34, 119–123 (2013)

    Article  Google Scholar 

  10. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17, 579–590 (2013)

    Article  Google Scholar 

  11. Feil-Seifer, D., Matarić, M.J.: Defining socially assistive robotics. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, June 28–July 1, 2005. Chicago, IL, USA (2005)

    Google Scholar 

  12. Graf, B.: (2014). Care-O-bot. http://www.care-o-bot.de/en/care-o-bot-3.html. Accessed on 30 July 2015

  13. Graf, B., Hans, M., Schraft, R.D.: Care-O-bot II: development of a next generation robotic home assistant. Auton. Robots 16, 193–205 (2004)

    Article  Google Scholar 

  14. Graf, B., Parlitz, C., Hägele, M.: Robotic home assistant Care-O-bot 3 product vision and innovation platform. In: Jacko JA (ed.) Human-Computer Interaction, Part II, (HCII 2009), LNCS 5611, pp. 312–320. Springer, Berlin (2009)

    Google Scholar 

  15. RIKEN-TRI Collaboration Center.: RIBA. http://rtc.nagoya.riken.jp/RIBA/index-e.html. Accessed on 30 July 2015

  16. Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., et al.: Development of a nursing-care assistant robot RIBA that can lift a human in its arms. In: Presented at the The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18–22, 2010. Taipei, Taiwan (2010)

    Google Scholar 

  17. Kuindersma, S.R., Hannigan, E., Ruiken, D., Grupen, R.A.: Dexterous mobility with the uBot-5 mobile manipulator. In: Presented at the International Conference on Advanced Robotics (ICAR), June 2009, pp. 1–7 (2009)

    Google Scholar 

  18. Xu, J., Grindle, G.G., Salatin, B., Vazquez, J.J., Wang, H., Ding, D., et al.: Enhanced bimanual manipulation assistance with the personal mobility and manipulation appliance (PerMMA). In: Presented at the The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18–22, 2010. Taipei, Taiwan (2010)

    Google Scholar 

  19. Wang, H., Grindle, G.G., Candiotti, J., Chung, C., Shino, M., Houston, E., et al.: The personal mobility and manipulation appliance (PerMMA): a robotic wheelchair with advanced mobility and manipulation. In: Presented at the The 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, 28 Aug–1 Sept 2012

    Google Scholar 

  20. Cooper, R.A., Grindle, G.G., Vazquez, J.J., Xu, J., Wang, H., Candiotti, J., et al.: Personal mobility and manipulation appliance-design, development, and initial testing. Proceddings IEEE 100, 2505–2511 (2012)

    Article  Google Scholar 

  21. Sato, M., Sugiyama, A., Ohnaka, S.: Auditory system in a personal robot, PaPeRo. In: 2006 Digest of technical Papers International Conference on Consumer Electronics (ICCE 06), pp. 19–20. 7–11 Jan 2006

    Google Scholar 

  22. Sato, M., Iwasawa, T., Sugiyama, A., Nishizawa, T., Takano, Y.: A single-chip speech dialogue module and its evaluation on a personal robot, PaPeRo-mini. In: Presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3697–3700, 19–24 April. Taipei, Taiwan (2009)

    Google Scholar 

  23. Fujiwara, N., Hagiwara, Y., Choi, Y.: Development of a learning support system with PaPeRo. In: Presented at the The 12th International Conference on Control, Automation and Systems, pp. 1912–1915, 17–21 October. Jeju Island, Korea (2012)

    Google Scholar 

  24. Hosoda, Y., Yamamoto, K., Ichinose, R., Egawa, S., Tamamoto, J.: Collision-avoidance algorithm for human-symbiotic robot. In: Presented at the International Conference on Control, Automation and Systems 2010, pp. 557–561, 27–30 October. Gyeonggi-do, Korea (2010)

    Google Scholar 

  25. Hosoda, Y., Egawa, S., Tamamoto, J., Yamamoto, K., Nakamura, R., Togami, M.: Basic design of human-symbiotic robot EMIEW. In: Presented at the Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5079–5084, 9–15 October. Beijing, China (2006)

    Google Scholar 

  26. HITACHI.: Robotics: EMIEW 2. http://www.hitachi.com/rd/portal/research/robotics/emiew2_01.html (2014). Accessed on 30 July 2015

  27. Falconer, J.: HOSPI-R drug delivery robot frees nurses to do more important work. http://www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/ (2013). Accessed on 30 July 2015

  28. Murai, R., Sakai, T., Kawano, H., Matsukawa, Y.: A novel visible light communication system for enhanced control of autonomous delivery robots in a hospital. In: Presented at the IEEE/SICE International Symposium on System Integration (SII), pp. 510–516, 16–18 December. Kyushu University, Fukuoka, Japan (2012)

    Google Scholar 

  29. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Education, Inc., Upper Saddle River (2010), ISBN 978-0-13-604259-4

    Google Scholar 

  30. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Pearson Education, Inc., Delhi, India, (1999), ISBN 8I-7808-300-0

    Google Scholar 

  31. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, Washington, DC (1962)

    MATH  Google Scholar 

  32. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Inc., Upper Saddle River (2009), ISBN 978-0-13-147139-9

    Google Scholar 

  33. Erdem, H.: Application of neuro-fuzzy controller for sumo robot control. Expert Syst. Appl. 38, 9752–9760 (2011)

    Article  Google Scholar 

  34. Patiño, H.D., Carelli, R., Kuchen, B.R.: Neural networks for advanced control of robot manipulators. IEEE Trans. Neural Networks 13, 343–354 (2002)

    Article  Google Scholar 

  35. Wai, R.-J.: Tracking control basedon neural network strategy for robot manipulator. Neurocomputing 51, 425–445 (2003)

    Article  Google Scholar 

  36. Yu, W.-S., Weng, C.-C.: An observer-based adaptive neural network tracking controlof robotic systems. Appl. Soft Comput. 13, 4645–4658 (2013)

    Article  Google Scholar 

  37. Oniz, Y., Kaynak, O.: Control of a direct drive robot using fuzzy spiking neural networks with variable structure systems-based learning algorithm. Neurocomputing 149, 690–699 (2015)

    Article  Google Scholar 

  38. Wang, X., Hou, Z.-G., Zou, A., Tan, M., Cheng, L.: A behavior controller based on spiking neural networks for mobile robots. Neurocomputing. 71, 655–666 (2008)

    Google Scholar 

  39. Wang, X., Hou, Z.-G., Lv, F., Tan, M., Wang, Y.: Mobile robots’modular navigation controller using spiking neural networks. Neurocomputing 134, 230–238 (2014)

    Article  Google Scholar 

  40. Mirjalili, S.: How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43, 150–161 (2015)

    Article  Google Scholar 

  41. Xing, B., Gao, W.-J.: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Springer International Publishing Switzerland, Cham (2014), ISBN 978-3-319-03403-4

    Google Scholar 

  42. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009), ISBN 978-0-470-27858-1

    Google Scholar 

  43. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  44. Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics, 2nd edn. Springer, Berlin (2004), ISBN 3-540-22494-7

    Google Scholar 

  45. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms, 2nd edn. Wiley, Hoboken (2014), ISBN 978-1-118-31523-1

    Google Scholar 

  46. Dorigo, M., Floreano, D., Gambardella, L. M.F., Mondada, F., Nolfi, S., Baaboura, T., et al: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. 20, 60–71 (2013)

    Google Scholar 

  47. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004), ISBN 0-262-04219-3

    Google Scholar 

  48. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Presented at the Proceedings of 1st Conference on Simulation of Adaptive Behavior (1991)

    Google Scholar 

  49. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30, 85–101 (2000)

    Article  Google Scholar 

  50. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artif. Life 5, 173–202 (1999)

    Article  Google Scholar 

  51. Caro, G.D.: A society of ant-like agents for adaptive routing in networks. Unpublished Master Thesis, Universite Libre de Bruxelles, Brussels, Belgium (2002)

    Google Scholar 

  52. Dorigo, M.: Swarms of self-assembling robots. In: Weyns D., Brueckner S.A., Demazeau Y. (eds.) EEMMAS 2007, LNAI 5049, pp. 1–2. Springer, Berlin (2008)

    Google Scholar 

  53. Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C., et al.: SWARM-BOT: design and implementation of colonies of self-assembling robots. In: Yen G.Y., Fogel D.B. (eds.) Computational Intelligence: Principles and Practice, pp. 103–135. IEEE Computational Intelligence Society, New York (2006)

    Google Scholar 

  54. Ferrante, E.: A control architecture for a heterogeneous swarm of robots: the design of a modular behavior-based architecture. Doctor of Philosophy, Universite Libre de Bruxelles (2009)

    Google Scholar 

  55. Brunete, A., Hernando, M., Gambao, E., Torres, J.E.: A behaviour-based control architecture for heterogeneous modular, multi-configurable, chained micro-robots. Robot. Auton. Syst. 60, 1607–1624 (2012)

    Article  Google Scholar 

  56. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. The MIT Press, Cambridge (2004), ISBN 0-262-19502-X

    Google Scholar 

  57. Regtien, P.P.L.: Sensors for Mechatronics. Elsevier Inc., London (2012), ISBN 978-0-12-391497-2

    Google Scholar 

  58. Scherz, P., Monk, S.: Practical Electronics for Inventors. McGraw-Hill, New York (2013), ISBN 978-0-07-177134-4

    Google Scholar 

  59. Jouaneh, M.: Fundamentals of mechatronics. Cengage Learning, Stamford (2013), ISBN 978-1-111-56901-3

    Google Scholar 

  60. Sinclair, I.R., Dunton, J.: Practical Electronics Handbook, 6th edn. Newnes, Elsevier Ltd., Oxford (2007), ISBN 978-0-75-068071-4

    Google Scholar 

  61. Kurfess, T.R. (ed.): Robotics and Automation Handbook. CRC Press LLC, Danvers (2005), ISBN 0-8493-1804-1

    Google Scholar 

  62. Chan, R.P.M., Stol, K.A., Halkyard, C.R.: Review of modelling and control of two-wheeled robots. Annu. Rev. Control 37, 89–103 (2013)

    Article  Google Scholar 

  63. Xu, Y., Ou, Y.: Control of Single Wheel Robots. Springer, Berlin (2005), ISBN 978-3-540-28184-9

    Google Scholar 

  64. Park, J.H., Jung, S.: Development and control of a single-wheel robot: practical mechatronics approach. Mechatronics 23, 594–606 (2013)

    Article  Google Scholar 

  65. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Manage. 22, 52–67 (2002)

    Article  Google Scholar 

  66. Hossain, M.A., Ferdous, I.: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Robot. Auton. Syst. 64, 137–141 (2015) (in press)

    Google Scholar 

  67. Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm—a novel tool for complex optimisation problems. In: Second International Virtual Conference on Intelligent production machines and systems (IPROMS), pp. 454–459 (2006)

    Google Scholar 

  68. Xu, S., Ji, Z., Pham, D.T., Yu, F.: Bio-inspired binary bees algorithm for a two-level distribution optimisation problem. J. Bionic Eng. 7, 161–167 (2010)

    Article  Google Scholar 

  69. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3, 87–124 (2009)

    Article  Google Scholar 

  70. Krishnanand, K.N., Ghose, D.: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: IEEE Swarm Intelligence Symposium (SIS), pp. 84–91 (2005)

    Google Scholar 

  71. Krishnan, K.N., Amruth, P., Guruprasad, M.H., Bidargaddi, S.V., Ghose, D.: Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 958–963. May, Orlando, Florida, USA (2006)

    Google Scholar 

  72. Birbil, Şİ., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wang, Y., Yang, Y., Yuan, X., Yin, F., Wei, S.: A model predictive control strategy for path-tracking of autonomous mobile robot using electromagnetism-like mechanism. In: International Conference on Electrical and Control Engineering (ICECE), pp. 96–100 (2010)

    Google Scholar 

  74. Shah-Hosseini, H.: Problem solving by intelligent water drops. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3226–3231, 25–28 September (2007)

    Google Scholar 

  75. Duan, H., Liu, S., Wu, J.: Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerosp. Sci. Technol. 13, 442–449 (2009)

    Article  Google Scholar 

  76. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  77. Seljanko, F.: Hexapod walking robot gait generation using genetic-gravitational hybrid algorithm. In: 15th International Conference on Advanced Robotics, pp. 253–258, 20–23 June. Tallinn University of Technology, Tallinn, Estonia (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xing, B. (2016). The Spread of Innovatory Nature Originated Metaheuristics in Robot Swarm Control for Smart Living Environments. In: Espinosa, H. (eds) Nature-Inspired Computing for Control Systems. Studies in Systems, Decision and Control, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-26230-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26230-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26228-4

  • Online ISBN: 978-3-319-26230-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics