Skip to main content

Abstract

The main objective of this paper is a texture-based solution to the problem of acute stroke tissue recognition on computed tomography images. Our proposed method of early stroke indication was based on two fundamental steps: (i) segmentation of potential areas with distorted brain tissue (selection of regions of interest), and (ii) acute stroke tissue recognition by extracting and then classifying a set of well-differentiating features. The proposed solution used various numerical image descriptors determined in several image transformation domains: 2D Fourier domain, polar 2D Fourier domain, and multiscale domains (i.e., wavelet, complex wavelet, and contourlet domain). The obtained results indicate the possibility of relatively effective detection of early stroke symptoms in CT images. Selected normal or pathological blocks were classified by LogitBoost with the accuracy close to 75 % with the use of our adjusted cross-validation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Calculated with DBM MRMC 2.5 software tool.

  2. 2.

    Definition of measures: \(Accuracy=\frac{TP+TN}{N_{pos}+N_{neg}}\), \(Sensitivity=\frac{TP}{N_{pos}}\), \(Specificity=\frac{TN}{N_{neg}}\), \(Precision=\frac{TP}{TP+FP}\).

References

  1. Wardlaw, J.M., Mielke, O.: Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment-systematic review. Radiology 235(2), 444–453 (2005)

    Article  Google Scholar 

  2. Muir, K.W., et al.: Can the ischemic penumbra be identified on noncontrast CT of acute stroke? Stroke 38(9), 2485–2490 (2007)

    Article  Google Scholar 

  3. Orrù, G., et al.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci. Biobehav. R. 36(4), 1140–1152 (2012)

    Article  Google Scholar 

  4. Przelaskowski, A. et al.: Stroke slicer for CT-based automatic detection of acute ischemia. In: Kurzynski, Marek, Wozniak, Michal (eds.) Comput. Recognit. Syst. 3. Advances in Intelligent Systems and Computing, vol. 57, pp. 447–454. Springer, Heidelberg (2009)

    Google Scholar 

  5. Ostrek, G., Przelaskowski, A.: Automatic early stroke recognition algorithm in CT images. In: Piętka, E., Kawa, J. (eds.) Inf. Technol. Biomed. Lecture Notes in Computer Science, vol. 7339, pp. 101–109. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Ragoschke-Schumm, W.S., et al.: Translation of the ‘time is brain’ concept into clinical practice: focus on prehospital stroke management. Int. J. Stroke 9(3), 333–340 (2014)

    Article  Google Scholar 

  7. The European Stroke Organisation (ESO) Executive committee: Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc. Dis. 25(5), 457–507 (2008)

    Google Scholar 

  8. Hudyma, E., Terlikowski, G.: Computer-aided detecting of early strokes and its evaluation on the base of CT images. In: Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT 2008), pp. 251–254 (2008)

    Google Scholar 

  9. Chawla, M., et al.: A method for automatic detection and classification of stroke from brain CT images. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), pp. 3581–3584 (2009)

    Google Scholar 

  10. Yongbum, L., Noriyuki, T., Du-Yih T.: Computer-aided diagnosis for acute stroke in CT images, Dr. L. Saba (ed.) Computed Tomography—Clinical Applications (2012). ISBN: 978-953-307-378-1

    Google Scholar 

  11. Noriyuki, T., et al.: Computer-aided detection scheme for identification of hypoattenuation of acute stroke in unenhanced CT. J. Radiol. Phys. Tech. 5(1), 98–104 (2012)

    Article  Google Scholar 

  12. Hema Rajini, N., Bhavani, R.: Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 46(6), 1865–1874 (2013)

    Article  Google Scholar 

  13. Nowinski, W.L., et al.: Automatic detection, localization, and volume estimation of ischemic infarcts in noncontrast computed tomographic scans: method and preliminary results. Invest. Radiol. 48(9), 661–670 (2013)

    Article  Google Scholar 

  14. Tang, F.-H., et al.: An image feature approach for computer-aided detection of ischemic stroke. Comp. Biol. Med. 41(7), 529–536 (2011)

    Article  Google Scholar 

  15. Takahashi, N., et al.: An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiol. Phys. Technol. 7(1), 79–88 (2014)

    Article  Google Scholar 

  16. Nowinski, W.L., et al.: Population-based stroke atlas for outcome prediction: method and preliminary results for ischemic stroke from CT. PLoS ONE 9(8), e102048 (2014)

    Article  Google Scholar 

  17. Jasionowska, M., et al.: A two-step method for detection of architectural distortions in mammograms. Inf. Technol. Biomed., Adv. Soft Comput. 69, 73–84 (2010)

    Article  Google Scholar 

  18. Jasionowska, Magdalena, Przelaskowski, Artur: Subtle directional mammographic findings in multiscale domain. In: Piętka, Ewa, Kawa, Jacek (eds.) Information Technologies in Biomedicine. Lecture Notes in Computer Science, vol. 7339, pp. 77–84. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, ACM (2006)

    Google Scholar 

  20. Freund, Y., Schapire, R.E., Experiments with a new boosting algorithm, ICML 96, (1996)

    Google Scholar 

  21. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 38, 337–374 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. McDonald, R.A., Hand, D.J., Eckley, I.A.: An empirical comparison of three boosting algorithms on real data sets with artificial class noise. MCS, LNCS 2709, 35–44 (2003)

    MATH  Google Scholar 

  23. Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting procedures for multiclass object detection. CVPR04 2, 762–769 (2004)

    Google Scholar 

  24. Valmianski, I., et al.: Automatic identification of fluorescently labeled brain cells for rapid functional imaging. J. Neurophysiol. 104(3), 1803–1811 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This publication was funded by the National Science Centre (Poland) based on the decision DEC-2011/03/B/ST7/03649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Ostrek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ostrek, G., Nowakowski, A., Jasionowska, M., Przelaskowski, A., Szopiński, K. (2016). Stroke Tissue Pattern Recognition Based on CT Texture Analysis. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. Advances in Intelligent Systems and Computing, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-319-26227-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26227-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26225-3

  • Online ISBN: 978-3-319-26227-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics