Skip to main content

Monitoring Variability and Complexity at the Bedside

  • Chapter
  • First Online:
The Value of Systems and Complexity Sciences for Healthcare

Abstract

Uncertainty regarding diagnosis and prognosis of critical illness results in increased mortality and cost. To address this clinical uncertainty, researchers have pioneered methods to analyse waveforms, including analysing the degree and variation of heart rate and respiratory rate over intervals-in-time, termed variability analysis. Research has demonstrated that altered heart and respiratory rate variability (HRV and RRV) are associated with and prognostic of critical illness (e.g. sepsis, organ failure, and extubation failure). We developed continuous individualized multiorgan variability analysis (CIMVATM) software to evaluate HRV and RRV continuously over time. We hypothesize that continuous variability monitoring in the ICU can provide improved ability to predict clinical trajectory potentially leading to real-time prognostication. In this review we explore the meaning of the altered variability in terms of degree and complexity and we discuss the potential clinical value of monitoring variability with respect to early warning of sepsis, prognostication of organ failure, impact of sedation, and improved prediction of extubation failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seely AJ. Embracing the certainty of uncertainty: implications for health care and research. Perspect Biol Med. 2013;56(1):65–77.

    Article  PubMed  Google Scholar 

  2. Luce JM, Rubenfeld GD. Can health care costs be reduced by limiting intensive care at the end of life? Am J Respir Crit Care Med. 2002;165(6):750–4.

    Article  PubMed  Google Scholar 

  3. Detsky AS, Stricker SC, Mulley AG, Thibault GE. Prognosis, survival,and the expenditure of hospital resources for patients in an intensive care unit. N Engl J Med. 1981;305:667–72.

    Google Scholar 

  4. Esteban A, Alia I, Tobin MJ, Gil A, Gordo F, Vallverdu I, et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish lung failure collaborative group. Am J Respir Crit Care Med. 1999;159(2):512–8.

    Article  CAS  PubMed  Google Scholar 

  5. Esteban A, Frutos F, Tobin MJ, Alia I, Solsona JF, Valverdu I, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332(6):345–50.

    Article  CAS  PubMed  Google Scholar 

  6. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50 [see comment].

    Google Scholar 

  7. Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I, et al. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One. 2009;4(8):e6642.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmad S, Tejuja A, Newman KD, Zarychanski R, Seely AJ. Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care. 2009;13(6):232.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seely AJ. Heart rate variability and infection: diagnosis, prognosis, and prediction. J Crit Care. 2006;21(3):286–9.

    Article  PubMed  Google Scholar 

  10. Bravi A, Green G, Longtin A, Seely AJ. Monitoring and identification of sepsis development through a composite measure of heart rate variability. PLoS One. 2012;7(9):e45666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnaby D, Ferrick K, Kaplan DT, Shah S, Bijur P, Gallagher EJ. Heart rate variability in emergency department patients with sepsis. Acad Emerg Med. 2002;9(7):661–70.

    Article  PubMed  Google Scholar 

  12. Chen WL, Kuo CD. Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Acad Emerg Med. 2007;14(5):392–7.

    Article  PubMed  Google Scholar 

  13. Garrard CS, Kontoyannis DA, Piepoli M. Spectral analysis of heart rate variability in the sepsis syndrome. Clin Auton Res. 1993;3(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein B, Fiser DH, Kelly MM, Mickelsen D, Ruttimann U, Pollack MM. Decomplexification in critical illness and injury: relationship between heart rate variability, severity of illness, and outcome. Crit Care Med. 1998;26(2):352–7.

    Article  CAS  PubMed  Google Scholar 

  15. Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S, et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care. 2003;18(3):156–63.

    Article  PubMed  Google Scholar 

  16. Bradley BD, Green G, Ramsay T, Seely AJ. Impact of sedation and organ failure on continuous heart and respiratory rate variability monitoring in critically ill patients: a pilot study. Crit Care Med. 2013;41(2):433–44.

    Article  PubMed  Google Scholar 

  17. Arnold R, Green G, Bravi A, Hollenberg S, Seely A. Impaired heart rate variability predicts clinical deterioration and progressive organ failure in emergency department sepsis patients. Crit Care. 2012;16(Suppl1):P37.

    Google Scholar 

  18. Green GC, Bradley B, Bravi A, Seely AJ. Continuous multiorgan variability analysis to track severity of organ failure in critically ill patients. J Crit Care. 2013;28(5):879.e1–11.

    Google Scholar 

  19. Seely AJ, Bravi A, Herry C, Green G, Longtin A, Ramsay T, et al. Do heart and respiratory rate variability improve prediction of extubation outcomes in critically ill patients? Crit Care. 2014;18(2):R65.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159(6):900–6.e1.

    Google Scholar 

  21. Seely AJ, Christou NV. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med. 2000;28(7):2193–200.

    Article  CAS  PubMed  Google Scholar 

  22. Buchman TG. Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr Opin Crit Care. 2004;10(5):378–82.

    Article  PubMed  Google Scholar 

  23. Buchman TG, Cobb JP, Lapedes AS, Kepler TB. Complex systems analysis: a tool for shock research. Shock. 2001;16(4):248–51.

    Article  CAS  PubMed  Google Scholar 

  24. Buchman TG, Stein PK, Goldstein B. Heart rate variability in critical illness and critical care. Curr Opin Crit Care. 2002;8(4):311–5.

    Article  PubMed  Google Scholar 

  25. Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet. 1996;347(9011):1312–4.

    Article  CAS  PubMed  Google Scholar 

  26. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40(4):543–61.

    Article  CAS  PubMed  Google Scholar 

  27. Goldberger AL. Nonlinear dynamics, fractals, and chaos theory: implications for neuroautonomic heart rate control in health and disease. In: Bolis CL, Licinio J, editors. The autonomic nervous system. Geneva: World Health Organization; 1999.

    Google Scholar 

  28. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A. 2002;99(Suppl 1):2466–72.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging. 2002;23(1):23–6.

    Article  PubMed  Google Scholar 

  30. Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellm L, Redman R, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest. 2002;122(6):2115–21 [see comment].

    Google Scholar 

  31. Buchan CA, Bravi A, Seely AJ. Variability analysis and the diagnosis, management, and treatment of sepsis. Curr Infect Dis Rep. 2012;14(5):512–21. doi: 10.1007/s11908-012-0282-4.

    Article  PubMed  Google Scholar 

  32. Odemuyiwa O, Malik M, Farrell T, Bashir Y, Poloniecki J, Camm J. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol. 1991;68(5):434–9.

    Article  CAS  PubMed  Google Scholar 

  33. Seely AJ, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8(6):R367–84.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bravi A, Longtin A, Seely AJ. Review and classification of variability analysis techniques with clinical applications. Biomed Eng Online. 2011;10:90.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bravi A, Herry C, Townsend D, Green G, Ramsay T, Longtin A, et al. Towards the identification of independent measures of heart rate variability. J Crit Care. 2013;28:e16.

    Article  Google Scholar 

  36. Frey U, Silverman M, Barabasi AL, Suki B. Irregularities and power law distributions in the breathing pattern in preterm and term infants. J Appl Physiol. 1998;85(3):789–97.

    CAS  PubMed  Google Scholar 

  37. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.

    Article  CAS  PubMed  Google Scholar 

  38. Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  39. Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med. 2011;269(1):45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris JA, Jr., Norris PR, Ozdas A, Waitman LR, Harrell FE, Jr., Williams AE, et al. Reduced heart rate variability: an indicator of cardiac uncoupling and diminished physiologic reserve in 1,425 trauma patients. J Trauma. 2006;60(6):1165–73 (Discussion 73–74).

    Article  PubMed  Google Scholar 

  41. Godin PJ, Buchman TG. Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Critical Care Med. 1996;24(7):1107–16 [see comments].

    Google Scholar 

  42. Seely AJ, Macklem P. Fractal variability: an emergent property of complex dissipative systems. Chaos. 2012;22(1):013108.

    Article  PubMed  Google Scholar 

  43. Seely AJ, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8(6):R367–84.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Axelrod S, Lishner M, Oz O, Bernheim J, Ravid M. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron. 1987;45(3):202–6.

    Article  CAS  PubMed  Google Scholar 

  45. Bonaduce D, Petretta M, Marciano F, Vicario ML, Apicella C, Rao MA, et al. Independent and incremental prognostic value of heart rate variability in patients with chronic heart failure. Am Heart J. 1999;138(2 Pt 1):273–84.

    Article  CAS  PubMed  Google Scholar 

  46. Guzzetti S, Mezzetti S, Magatelli R, Porta A, De Angelis G, Rovelli G, et al. Linear and non-linear 24 h heart rate variability in chronic heart failure. Auton Neurosci. 2000;86(1–2):114–9.

    Article  CAS  PubMed  Google Scholar 

  47. Guzzetti S, Piccaluga E, Casati R, Cerutti S, Lombardi F, Pagani M, et al. Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens. 1988;6(9):711–7.

    Article  CAS  PubMed  Google Scholar 

  48. Huang J, Sopher SM, Leatham E, Redwood S, Camm AJ, Kaski JC. Heart rate variability depression in patients with unstable angina. Am Heart J. 1995;130(4):772–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lishner M, Akselrod S, Avi VM, Oz O, Divon M, Ravid M. Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. Journal of the autonomic nervous system. 1987;19(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  50. Mussalo H, Vanninen E, Ikaheimo R, Laitinen T, Laakso M, Lansimies E, et al. Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin Physiol. 2001;21(5):594–604.

    Article  CAS  PubMed  Google Scholar 

  51. Pardo Y, Merz CN, Paul-Labrador M, Velasquez I, Gottdiener JS, Kop WJ, et al. Heart rate variability reproducibility and stability using commercially available equipment in coronary artery disease with daily life myocardial ischemia. Am J Cardiol. 1996;78(8):866–70.

    Article  CAS  PubMed  Google Scholar 

  52. Poulsen SH, Jensen SE, Moller JE, Egstrup K. Prognostic value of left ventricular diastolic function and association with heart rate variability after a first acute myocardial infarction. Heart (British Cardiac Society). 2001;86(4):376–80.

    Article  CAS  Google Scholar 

  53. van Boven AJ, Jukema JW, Haaksma J, Zwinderman AH, Crijns HJ, Lie KI. Depressed heart rate variability is associated with events in patients with stable coronary artery disease and preserved left ventricular function. REGRESS Study Group. Am Heart J. 1998;135(4):571–6.

    Article  Google Scholar 

  54. van de Borne P, Montano N, Pagani M, Oren R, Somers VK. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95(6):1449–54.

    Article  PubMed  Google Scholar 

  55. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.

    Article  PubMed  Google Scholar 

  56. Glass L, Kaplan D. Time series analysis of complex dynamics in physiology and medicine. Med Prog Technol. 1993;19(3):115–28.

    CAS  PubMed  Google Scholar 

  57. Stanley HE, Amaral LA, Goldberger AL, Havlin S, Ivanov P, Peng CK. Statistical physics and physiology: monofractal and multifractal approaches. Physica A. 1999;270(1–2):309–24.

    Article  CAS  PubMed  Google Scholar 

  58. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215–R220.

    Article  CAS  PubMed  Google Scholar 

  59. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J Physiol. 1994;266(4 Pt 2):H1643–56.

    CAS  PubMed  Google Scholar 

  61. Pincus S, Singer BH. Randomness and degrees of irregularity. Proc Natl Acad Sci U S A. 1996;93(5):2083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pincus SM. Assessing serial irregularity and its implications for health. Ann N Y Acad Sci. 2001;954:245–67.

    Article  CAS  PubMed  Google Scholar 

  63. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039–49.

    CAS  PubMed  Google Scholar 

  64. Costa M, Goldberger AL, Peng CK. Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput Cardiol. 2002;29:137–140.

    Article  CAS  PubMed  Google Scholar 

  65. West BJ, editor. Where medicine went wrong: rediscovering the path to complexity. London: World Scientific Publishing Co; 2006.

    Google Scholar 

  66. Seely A, Newman KD, Herry C. Fractal structure and entropy production within the central nervous system. 2014;16(8): 4497–520.

    Google Scholar 

  67. Seely AJ, Christou NV. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med. 2000;28(7):2193–2200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. E. Seely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seely, A.J.E., Newman, K.D., Herry, C. (2016). Monitoring Variability and Complexity at the Bedside. In: Sturmberg, J. (eds) The Value of Systems and Complexity Sciences for Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-319-26221-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26221-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26219-2

  • Online ISBN: 978-3-319-26221-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics