Skip to main content

Digital Analytical Geometry: How Do I Define a Digital Analytical Object?

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9448))

Included in the following conference series:

Abstract

This paper is meant as a short survey on analytically defined digital geometric objects. We will start by giving some elements on digitizations and their relations to continuous geometry. We will then explain how, from simple assumptions about properties a digital object should have, one can build mathematically sound digital objects. We will end with open problems and challenges for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. GMIP 59(5), 302–309 (1997)

    Google Scholar 

  2. Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comp. Graphics 3(1), 75–86 (1997)

    Article  Google Scholar 

  3. Andres, E., Nehlig, P., Françon, J.: Supercover of straight lines, planes and triangles. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Andres, E., Nehlig, P., Francon, J.: Tunnel-free supercover 3D polygons and polyhedra. In: Eurographics 1997. Computer Graphics Forum, vol. 16, pp. C3–C13 (1997)

    Google Scholar 

  5. Andrès, É.: Defining discrete objects for polygonalization: the standard model. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 313–325. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Andres, E.: Discrete linear objects in dimension n: the standard model. Graph. Models 65(1–3), 92–111 (2003)

    Article  MATH  Google Scholar 

  7. Andres, E.: The supercover of an m-flat is a discrete analytical object. Theor. Comput. Sci. 406(1–2), 8–14 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Andres, E., Largeteau-Skapin, G., Rodríguez, M.: Generalized perpendicular bisector and exhaustive discrete circle recognition. Graph. Models 73(6), 354–364 (2011)

    Article  Google Scholar 

  9. Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 235–246. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Berthé, V., Labbé, S.: An arithmetic and combinatorial approach to three-dimensional discrete lines. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 47–58. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)

    Article  Google Scholar 

  13. Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)

    Article  MATH  Google Scholar 

  14. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recogn. Lett. 23(6), 623–636 (2002)

    Article  MATH  Google Scholar 

  15. Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 53–64. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brons, R.: Linguistic methods for the description of a straight line on a grid. CGIP 3(1), 48–62 (1974)

    MathSciNet  Google Scholar 

  20. Chassery, J.M., Montanvert, A.: Géométrie discrète en imagerie. Ed. Hermès, Paris (1987)

    Google Scholar 

  21. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recogn. 42(10), 2220–2228 (2009)

    Article  MATH  Google Scholar 

  22. Jordan, C.: Remarques sur les intégrales définies. Journal de Mathématiques, 4ème série, T.8, pp. 69–99 (1892)

    Google Scholar 

  23. Coeurjolly, D., Blot, V., Jacob-Da Col, M.-A.: Quasi-Affine transformation in 3-D: theory and algorithms. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 68–81. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Cohen-Or, D., Kaufman, A.E.: Fundamentals of surface voxelization. CVGIP 57(6), 453–461 (1995)

    Google Scholar 

  25. Coven, E.M., Hedlund, G.: Sequences with minimal block growth. Math. Syst. Theory 7(2), 138–153 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Proceeding Graphics Interface, pp. 205–212. Canadian Human-Computer Communications Society, Montréal (2000)

    Google Scholar 

  27. Debled-Renesson, I., Reveillès, J.P.: A new approach to digital planes. In: SPIE Vision Geometry III, vol. 2356, Boston (1994)

    Google Scholar 

  28. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets, PhD Thesis. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1995)

    Google Scholar 

  29. Debled-Rennesson, I., Remy, J., Rouyer-Degli, J.: Segmentation of discrete curves into fuzzy segments. Elect. Notes Discrete Math. 12, 372–383 (2003)

    Article  MathSciNet  Google Scholar 

  30. Feschet, F., Reveillès, J.-P.: A generic approach for n-dimensional digital lines. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 29–40. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Figueiredo, O., Reveillès, J.: A contribution to 3D digital lines. In: 5th DGCI, pp. 187–198, Clermont-Ferrand (1995)

    Google Scholar 

  32. Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Proceeding SPIE Vision Geometry XIV, vol. 6066, pp. 1–12 (2006)

    Google Scholar 

  33. Francon, J.: Arithmetic planes and combinatorial manifolds. In: 5th DGCI, pp. 209–217, Clermont-Ferrand (1995)

    Google Scholar 

  34. Francon, J.: Discrete combinatorial surfaces. CVGIP 57(1), 20–26 (1995)

    Google Scholar 

  35. Francon, J.: Sur la topologie d’un plan arithmétique. Theor. Comput. Sci. 156(1&2), 159–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 83–94. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  37. Heijmans, H.J.A.M.: Morphological image operators. Academy Press, Boston (1994)

    MATH  Google Scholar 

  38. Herman, G.T.: Discrete multidimensional jordan surfaces. CVGIP 54(6), 507–515 (1992)

    MathSciNet  Google Scholar 

  39. Jamet, D., Toutant, J.: Minimal arithmetic thickness connecting discrete planes. Discrete Appl. Math. 157(3), 500–509 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kaufman, A.E.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. In: Proceeding 14th SIGGRAPH, pp. 171–179 (1987)

    Google Scholar 

  41. Kaufman, A.E.: Efficient algorithms for scan-converting 3D polygons. Comput. Graph. 12(2), 213–219 (1988)

    Article  Google Scholar 

  42. Kim, C.E.: Three-dimensional digital line segments. IEEE Trans. PAMI 5(2), 231–234 (1983)

    Article  MATH  Google Scholar 

  43. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Appl. Math. 139(1–3), 197–230 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. CVGIP 48(3), 357–393 (1989)

    Google Scholar 

  45. Kovalesky, V.: Finite topology and image analysis. Adv. Electron. Electron Phys. 84, 197–259 (1992)

    Article  Google Scholar 

  46. Lincke, C., Wüthrich, C.A.: Surface digitizations by dilations which are tunnel-free. Discrete Appl. Math. 125(1), 81–91 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. McIlroy, M.D.: Best approximate circles on integer grids. ACM Trans. Graph. 2(4), 237–263 (1983)

    Article  MATH  Google Scholar 

  48. McIlroy, M.D.: Getting raster ellipses right. ACM Trans. Graph. 11(3), 259–275 (1992)

    Article  MATH  Google Scholar 

  49. Montanari, U.: On limit properties in digitization schemes. J. ACM 17(2), 348–360 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  50. Mora, F., Ruillet, G., Andres, E., Vauzelle, R.: Pedagogic discrete visualization of electromagnetic waves. In: Eurographics 2003, Interactive Demos and Posters, pp. 123–126 (2003)

    Google Scholar 

  51. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Inf. Control 51(3), 227–247 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  52. Reveillès, J.P.: Calcul en Nombres Entiers et Algorithmique. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1991)

    Google Scholar 

  53. Reveillès, J., Richard, D.: Back and forth between continuous and discrete for the working computer scientist. Ann. Math. Artif. Intell. 16, 89–152 (1996)

    Article  MATH  Google Scholar 

  54. Ronse, C., Tajine, M.: Hausdorff discretization for cellular distances and its relation to cover and supercover discretizations. J. Vis. Commun. Image Represent. 12(2), 169–200 (2001)

    Article  Google Scholar 

  55. Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. GMIP 53(4), 305–312 (1991)

    MATH  Google Scholar 

  57. Sankar, P.: Grid intersect quantization schemes for solid object digitization. Comput. Graphics Image Process. 8(1), 25–42 (1978)

    Article  Google Scholar 

  58. Sekiya, F., Sugimoto, A.: On connectivity of discretized 2D explicit curve. In: Mathematical Progress in Expressive Image Synthesis, Symposium MEIS 2014, pp. 16–25, Japan (2014)

    Google Scholar 

  59. Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image Vision Comput. 26(10), 1338–1346 (2008)

    Article  Google Scholar 

  60. Tajine, M., Ronse, C.: Topological properties of hausdorff discretization, and comparison to other discretization schemes. Theor. Comput. Sci. 283(1), 243–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  61. Taubin, G.: Rasterizing algebraic curves and surfaces. IEEE Comput. Graphics 14(2), 14–22 (1994)

    Article  Google Scholar 

  62. Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Heidelberg (2014)

    Google Scholar 

  63. Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Andres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andres, E. (2015). Digital Analytical Geometry: How Do I Define a Digital Analytical Object?. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26145-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26144-7

  • Online ISBN: 978-3-319-26145-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics