Skip to main content

Membrane Separators for Electrochemical Energy Storage Technologies

  • Chapter
  • First Online:
Nanomaterials in Advanced Batteries and Supercapacitors

Abstract

In recent years, extensive efforts have been undertaken to develop advanced membrane separators for electrochemical energy storage devices, in particular, batteries and supercapacitors, for different applications such as portable electronics, electric vehicles, and energy storage for power grids. The membrane separator is a critical component in batteries (lithium–ion and redox flow) and capacitors as it determines the performance as well as the economic viability. The membrane separator prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. The performance of these devices is greatly affected by the materials and structure of the membrane separators. Separators for lithium–ion batteries (LIBs) can be classified into (1) microporous polymer membranes, (2) nonwoven fabrics, and (3) inorganic composite membranes. In redox flow batteries, ion-exchange membranes (cation/anion) that conduct positive–negative charged ions are traditionally used as separators. The porous separator membrane that separates the electrodes of supercapacitor allows ions to diffuse across to the opposite electrode, without recombination, when voltage is applied. An ideal membrane separator should have high ionic conductivity, low water intake, and excellent chemical and thermal stability, as well as good ionic exchange capacity to withstand the assembly process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195(24):7880–7903; (b) Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613. doi:10.1021/cr100290v; (c) Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769. doi:10.1002/adma.201004134

    Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269. doi:10.1021/cr020730k

    Article  Google Scholar 

  3. (a) Roberts B, McDowall J (2005) Commercial successes in power storage: advances in power electronics and battery application yield new opportunities. IEEE Power Energy Mag 3(2), March; (b) Shibata A, Sato K (1999) Development of a vanadium redox flow battery for electricity storage. IEEE Power Eng J 13(3):130–135; (c) Koshimizu G, Numata T (2005) Applications of energy storage for stabilization of wind power in power systems. Annual meeting presentation, Subaru Project, ESA, May 24

    Google Scholar 

  4. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2010) Electrochemical energy storage for green grid. Chem Rev doi:10.1021/cr100290v

    Google Scholar 

  5. Nor NSM, Deraman M, Omar, Taer E, Awitdrus, Farma R, Basri RH, Dolah BNM (2013) Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches. Paper presented at the AIP conference proceedings 1586:68–73. doi:10.1063/1.4866732

  6. Chatzivasileiadi A, Ampatzi E, Knight I (2013) Characteristics of electrical energy storage technologies and their applications in buildings. Renew Sustain Energy Rev 25:814–830. doi:10.1016/j.rser.2013.05.023

    Article  Google Scholar 

  7. Kreuer KD (2014) Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater 26:361–380. doi:10.1021/cm402742u

    Article  Google Scholar 

  8. Hunt GL (1988) The great battery search. Spectr IEEE 35(11):21–28

    Article  Google Scholar 

  9. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302. doi:10.1021/cr020731c

    Article  Google Scholar 

  10. Price A, Bartley S, Male S, Cooley G (1999) A novel approach to utility scale energy storage. J Power Eng 13(3):122–129

    Article  Google Scholar 

  11. Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M (2010) Membranes for redox flow battery applications. Membranes 2:275–306. doi:10.3390/2020275

    Article  Google Scholar 

  12. (a) Rychcik M, Skyllas-Kazacos M (1987) Evaluation of electrode materials for vanadium redox cell. J Power Sources 19(1):45–54. doi:10.1016/0378-7753(87)80006-X; (b) Hagg CM, Skyllas-Kazacos M (2002) Novel bipolar electrodes for battery applications. J Appl Electrochem 32(10):1063–1069. doi:10.1023/A:1021228304148

    Google Scholar 

  13. (a) Qiu Y, Li MY, Ni JF, Zhai ML, Peng L, Xu L, Zhou HH, Li JQ, Wei GS (2007) Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. J Membr Sci 297(1–2):174–180. doi:10.1016/j.memsci.2007.03.042; (b) Vafiadis H, Skyllas-Kazacos M (2006) Evaluation of membranes for the novel vanadium bromine redox flow cell. J Membr Sci 279(1–2):394–402. doi:10.1016/j.memsci.2005.12.028

    Google Scholar 

  14. (a) Ponce de León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160(1):716–732. doi:10.1016/j.jpowsour.2006.02.095; (b) Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79. doi:10.1149/1.3599565; (c) Nourai A (2002) Large-scale electricity storage technologies for energy management. Power Eng Soc Summer Meet 1:310–315, July 2002

    Google Scholar 

  15. Butler PC, Miller DW, Verardo AE (1982) 17th intersociety energy conversion engineering conference, vol 2, p 653, Los Angeles

    Google Scholar 

  16. Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104(10):4419–4462. doi:10.1021/cr020738u

    Article  Google Scholar 

  17. (a) Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. doi:10.1126/science.1158736; (b) Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534–537. doi:10.1126/science.1239089

    Google Scholar 

  18. (a) Halper MS, Ellenbogen JC (2006) Supercapacitors: a brief overview, The MITRE Corporation, McLean, Virginia, Technical report 06-0667, Mar 2006; (b) Rufer A, Hotellier D, Barrade P (2004) A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks. IEEE Trans Power Deliv 19(2):629–636; (c) Jayalakshmi M, Balasubramani K (2008) Simple capacitors to supercapacitors – an overview. Int J Electrochem Sci 3(11):1196–1217

    Google Scholar 

  19. Béguin F, Frackowiak E (eds) (2013) Supercapacitors-materials, systems, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  20. Schneuwly A, Gallay R (2000) Properties and applications of supercapacitors from the state-of-the-art to future trends. Paper presented at the proceeding PCIM, Boston, 3–5 Oct 2000

    Google Scholar 

  21. (a) Yu A, Chabot V, Zhang J (eds) (2013) Electrochemical supercapacitors for energy storage delivery – fundamentals and applications. CRC Press, Taylor and Francis Group; (b) Conway BE(1st ed) (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers

    Google Scholar 

  22. Sun XZ, Zhang X, Huang B, Zhang HT, Zhang DC, Ma YW (2013) (LiNi0.5Co0.2Mn0.3O2 + AC)/graphite hybrid energy storage device with high specific energy and high rate capability. J Power Sources 243:361–368. doi:10.1016/j.jpowsour.2013.06.038

    Article  Google Scholar 

  23. Davies A, Yu AP (2011) Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng 89(6):1342–1357. doi:10.1002/cjce.20586

    Article  Google Scholar 

  24. (a) Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148(8):A930–A939. doi:10.1149/1.1383553; (b) Cericola D, Kötz R (2012) Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits. Electrochim Acta 72:1–17. doi:10.1016/j.electacta.2012.03.151

    Google Scholar 

  25. Cheng SC, Liang YZ, Zhao JM, Zhang CH, Sun SY, Zhou NT, Qiu YP (2013) Zhang XW (2013) heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J Power Sources 240:204–211. doi:10.1016/j.jpowsour.2013.04.019

    Article  Google Scholar 

  26. Huang XS (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662. doi:10.1007/s10008-010-1264-9

    Article  Google Scholar 

  27. Balducci A, Soavi F, Mastragostino M (2006) The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl Phys A 82:627–632. doi:10.1007/s00339-014-8674-y

    Article  Google Scholar 

  28. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364. doi:10.1016/j.jpowsour.2006.10.065

    Article  Google Scholar 

  29. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886. doi:10.1039/c4ee01432d

    Article  Google Scholar 

  30. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41. PII: S0378-7753-98.00168-2

    Google Scholar 

  31. Kirchhöfer M, von Zamory J, Paillard E, Passerini S (2014) Separators for Li-Ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI− and FSI− Anions. Int J Mol Sci 15:14868–14890. doi:10.3390/ijms150814868

    Article  Google Scholar 

  32. (a) Abraham KM, Alamgir M (1994) Room temperature polymer electrolytes and batteries based on them. Solid State Ionics 70–71(1):20–26. doi:10.1016/0167-2738(94)90283-6; (b) Shiao HC, Chua D, Lin HP, Slane S, Salomon M (2000) Low temperature electrolytes for Li-ion PVDF cells. J Power Sources 87:167–173. PII: S0378- 7753-99.00470-X; (c) Panero S, Scrosati B (2000) Gelification of liquid–polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J Power Sources 90:13–19. PII: S0378- 7753-99.00470-X

    Google Scholar 

  33. (a) Bottino A, Camera-Roda G, Capannelli G, Munari S (1991) The formation of microporous polyvinylidene difluoride membranes by phase separation. J Membr Sci 57(1):1–20. doi:10.1016/S0376-7388(00)81159-X; (b) Boudin F, Andrieu X, Jehoulet C, Olsen II (1999) Microporous PVdF gel for lithium-ion batteries. J Power Sources 81–82:804–807. PII: S0378-7753-99.00154-8; (c) Saunier J, Alloin F, Sanchez J, Caillon G (2003) Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. J Power Sources 119–121:454–459. doi:10.1016/S0378-7753(03)00197-6; (d) Magistris A, Mustarelli P, Parazzoli F, Quartarone E, Piaggio P, Bottino A (2001) Porosity and conductivity of PVDF films for polymer electrolytes. J Power Sources 97–98:657–660. PII: S0378-7753(01)00644-9; (e) Djian D, Alloin F, Martinet S, Lignier H (2009) Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity. J Power Sources 187(2):575–580. doi:10.1016/j.jpowsour.2008.11.027; (f) Jiang Z, Carroll B, Abraham KM (1997) Studies of some poly(vinylidine fluoride) electrolytes Electrochim. Acta 42(17):2667–2677. PII: s00134686(97)000054; (g) Magistris A, Quartarone E, Mustarelli P, Saito Y, Kataoka H (2002) PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ion 152–153:347–354. PII: S0167-2738(02)00335-1

    Google Scholar 

  34. (a) Min HS, Ko JM, Kim DW (2003) Preparation and characterization of porous polyacrylonitrile membranes for lithium ion polymer batteries. J Power Sources 119–121:469–472. doi:10.1016/S0378-7753(03)00206-4; (b) Jung B, Yoon JK, Kim B, Rhee HW (2005) Effect of crystallization and annealing of polyacrylonitrile membranes for ultrafiltration. J Membr Sci 246(1):67–76. doi:10.1016/j.memsci.2004.08.012

    Google Scholar 

  35. Gopalan A, Santhosh P, Manesh K, Nho J, Kim S, Hwang C, Lee K (2008) Development of electrospun PVDF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690. doi:10.1016/j.memsci.2008.08.047

    Article  Google Scholar 

  36. Lee MH, Kim HJ, Kim E, Rhee SB, Moon MJ (1996) Effect of phase separation on ionic conductivity of poly(methy1 methacrylate)-based solid polymer electrolyte. Solid State Ion 85(1–4):91–98. PII: SO167-2738(96)00046-X

    Google Scholar 

  37. Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964. doi:10.1016/j.polymer.2006.05.069

    Article  Google Scholar 

  38. Ihm DW, Noh JG, Kim JY (2002) Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. J Power Sources 109:388–393. PII: S0378-7753(02)00097-6

    Google Scholar 

  39. Saunier J, Alloin F, Sanchez J, Caillon G (2003) Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. J Power Sources 119–121:454–459. doi:10.1016/S0378-7753(03)00197-6

    Article  Google Scholar 

  40. Min HS, Ko JM, Kim DW (2003) Preparation and characterization of porous polyacrylonitrile membranes for lithium ion polymer batteries. J Power Sources 119–121:469–472. doi:10.1016/S0378-7753(03)00206-4

    Article  Google Scholar 

  41. Appetecchi GB, Croce F, Scrosati B (1997) High performance electrolyte membranes for plastic lithium batteries. J Power Sources 66(1–2):77–82. PII:SO378-7753(96)02484-6

    Google Scholar 

  42. Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration. Solid State Ion 66(1–2):97–104. doi:10.1016/0167-2738(93)90032-X

    Article  Google Scholar 

  43. Magistris A, Quartarone E, Mustarelli P, Saito Y, Kataoka H (2002) PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ion 152–153:347–354. PII: S0167-2738(02)00335-1

    Google Scholar 

  44. Subramania A, Sundaram NTK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153(1):177–182. doi:10.1016/j.jpowsour.2004.12.009

    Article  Google Scholar 

  45. Nicotera I, Coppola L, Oliviero C, Castriota M, Cazzanelli E (2006) Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolyte. Solid State Ion 177(5–6):581–588. doi:10.1016/j.ssi.2005.12.028

    Article  Google Scholar 

  46. Choi NS, Lee YG, Park JK, Ko JM (2001) Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend. Electrochim Acta 46(10–11):1581–1586. doi:10.1016/s0013-4686(00)00756-8

    Google Scholar 

  47. Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ion 69(3–4):265–270. doi:10.1016/0167-2738(94)90415-4

    Article  Google Scholar 

  48. Huai Y, Gao J, Deng Z, Suo J (2010) Preparation and characterization of a special structural poly(acrylonitrile)-based microporous membrane for lithium-ion batteries. Ionics 16:603–611. doi:10.1007/s11581-010-0431-4

    Article  Google Scholar 

  49. Park JH, Park W, Kim JH, Ryoo D, Kim HS, Jeong YU, Kim DW, Lee SY (2011) Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries. J Power Sources 196:7035–7038. doi:10.1016/j.jpowsour.2010.09.102

    Article  Google Scholar 

  50. Wang HP, Huang H, Wunder SL (2000) Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-ion batteries. J Electrochem Soc 147:2853–2861. doi:10.1149/1.1393616

    Article  Google Scholar 

  51. (a) Taskier (1982) HT, Hydrophilic polymer coated microporous membranes capable of use as a battery separator. US Patent 4,359,510, 3 Sept 1982; (b) Gineste JL, Pourcelly G (1995) Polypropylene separator grafted with hydrophilic monomers for lithium batteries. J Membr Sci 107:155–164. SSD10376-7388(95)001 12–3; (c) Senyarich S, Viaud P (2000) Method of forming a separator for alkaline electrolyte secondary electric cell. US Patent 6,042,970, 28 Mar 2000; (d) Gao K, Hu XG, Yi TF, Dai CS (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52:443–449. doi:10.1016/j.electacta.2006.05.049

    Google Scholar 

  52. Jarvis CR, Macklin WJ, Macklin AJ, Mattingley NJ, Kron E (2001) Use of grafted PVdF based polymers in lithium batteries. J Power Sources 97:664–666. PII: S0378-7753(01)00696-6

    Google Scholar 

  53. Jeong KU, Chae HD, Lim CH, Lee HK, Ahn JH, Nah C (2009) Fabrication and characterization of electrolyte membranes based on organoclay/tripropylene glycol diacrylate/poly(vinylidene fluoride) electrospun nanofiber composites. Polym Int 59:249–255. doi:10.1002/pi.2716

    Google Scholar 

  54. Song MK, Kim YT, Kim YT, Cho BW, Popov BN, Rhee HW (2003) Thermally stable gel polymer electrolytes. J Electrochem Soc 150(4):A439–A444. doi:10.1149/1.1556592

    Article  Google Scholar 

  55. (a) Kim DW, Ko JM, Chun JH, Kim SH, Park JK (2001) Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators. Electrochem Commun 3:535–538. PII:S1388-2481(01)00214-4; (b) Kim DW, Noh KA, Chun JH, Kim SH, Ko JM (2001) Highly conductive polymer electrolytes supported by microporous membrane. Solid State Ion 144:329–337. PII: S0167-2738Ž01.00977-8; (c) Eschbach FO, Oliver M (1997) Gel electrolyte bonded rechargeable electrochemical cell and method of making same. US Patent 5,681,357, 28 Oct 1997; (d) Hamano K, Shiota H, Shiraga S, Aihara S, Yoshida Y, Murai M, Inuzuka T (1999) Lithium-ion secondary battery and method of fabricating thereof. US Patent 5,981,107, 9 Nov 1999

    Google Scholar 

  56. Jeong YB, Kim DW (2004) Effect of thickness of coating layer on polymer-coated separator on cycling performance of lithium-ion polymer cells. J Power Sources 128:256–262. doi:10.1016/j.jpowsour.2003.09.073

    Article  Google Scholar 

  57. (a) Oh JS, Kang YK, Kim DW (2006) Lithium polymer batteries using the highly porous membrane filled with solvent-free polymer electrolyte. Electrochim Acta 52:1567–1570. doi:10.1016/j.electacta.2006.02.062; (b) Lee YM, Choi NS, Lee JA, Seol WH, Cho KY, Jung YJ, Kim JW, Park JK (2005) Electrochemical effect of coating layer on the separator based on PVdF and PE non-woven matrix. J Power Sources 146:431–435. doi:10.1016/j.jpowsour.2005.03.047; (c) Kim JY, Kim SK, Lee SJ, Lee SY, Lee HM, Ahn S (2004) Preparation of micro-porous gel polymer for lithium ion polymer battery. Electrochim Acta 50:363–366. doi:10.1016/j.electacta.2004.01.131

    Google Scholar 

  58. Song MK, Kim YT, Cho YJ, Cho BW, Popov BN, Rhee HW (2004) Composite polymer electrolytes reinforced by non-woven fabrics. J Power Sources 125:10–16. doi:10.1016/S0378-7753(03)00826-7

    Article  Google Scholar 

  59. Kritzer P (2006) Nonwoven support material for improved separators in Li–polymer batteries. J Power Sources 161:1335–1340. doi:10.1016/j.jpowsour.2006.04.142

    Article  Google Scholar 

  60. Cheita JR, Dutta A, Dass NN (2002) Characterization and conductivity studies of poly(2-dimethylamino ethylmethacrylate) and its hydrochloride salt in solid state. In: Chowdari BVR (ed) Proceedings of the 8th Asian conference, Langkawi

    Google Scholar 

  61. (a) Nookala M, Kumar B, Rodrigues S (2002) Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nanosize alumina. J Power Sources 111(1):165–172. doi:10.1016/S0378-7753(02)00303-8; (b) Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008) Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membr Sci 325(2):957–963. doi:10.1016/j.memsci.2008.09.022

    Google Scholar 

  62. Cao C, Li ZB, Wang XL, Zhao XB, Han WQ (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2(25):1–10. doi:10.3389/fenrg.2014.00025

    Google Scholar 

  63. (a) Wang Y, Ma X, Zhang Q, Tian N (2010) Synthesis and properties of gel polymer electrolyte membranes based on novel comb-like methyl methacrylate copolymers. J Membr Sci 349(1–2):279–286. doi:10.1016/j.memsci.2009.11.060; (b) Lee KH, Park JK, Kim WJ (2000) Electrochemical characteristics of PAN ionomer based polymer electrolytes. Electrochim Acta 45(8–9):1301–1306. doi:10.1016/S0013-4686(99)00336-9

    Google Scholar 

  64. (a) Kim KM, Ryu KS, Kang SG, Chang SH, Chung IJ (2001) The effect of silica addition on the properties of poly((vinylidene fluoride)-co-hexafluoropropylene)-based polymer electrolytes. Macromol Chem Phys 202:866–872. doi:10.1002/1521-3935(20010301)202; (b) Kim KM, Park NG, Ryu KS, Chang SH (2002) Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles. Polymer 43(11):3951–3957. doi:10.1016/S0032-3861(02)00215-X

  65. (a) Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi:10.1038/451652a; (b) Manuel Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42. doi:10.1016/j.eurpolymj.2005.09.017

    Google Scholar 

  66. Bruce PG (1995) Structure and electrochemistry of polymer electrolytes. Electrochim Acta 40(13–14):2077–2085. doi:10.1016/0013-4686(95)00144-4

    Article  Google Scholar 

  67. Song J, Wang Y, Wan C (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197. PII: S0378-7753(98)00193-1

    Google Scholar 

  68. Ito Y, Kanehori K, Miyauchi K, Kudo T (1987) Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly (ethylene glycol). J Mater Sci 22(5):1845–1849

    Article  Google Scholar 

  69. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5:63–69

    Article  Google Scholar 

  70. Choi B, Kim Y, Shin H (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim Acta 45:1371–1374. PII: S0013-4686(99)00345-X

    Google Scholar 

  71. (a) Ramesh S, Leen KH, Kumutha K, Arof A (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc 66:1237–1242. doi:10.1016/j.saa.2006.06.012; (b) Lee H, Yoo JK, Park JH, Kim JH, Kang K, Jung YS (2012) A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation. Adv Energy Mater 2:976–982. doi:10.1002/aenm.201100725

    Google Scholar 

  72. (a) Esterly DM (2002) Manufacturing of poly (vinylidene fluoride) and evaluation of its mechanical properties. A Master’s thesis submitted on the 9th of August 2002, University of Blackburn, Virginia; (b) Choe H, Giaccai J, Alamgir M, Abraham K (1995) Preparation and characterization of poly (vinyl sulfone)-and poly (vinylidene fluoride)-based electrolytes. Electrochim Acta 40(13–14):2289–2293.

    Google Scholar 

  73. (a) Gentili V, Panero S, Reale P, Scrosati B (2007) Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. J Power Sources 170:185–190. doi:10.1016/j.jpowsour.2007.04.008; (b) Salimi A, Yousefi AA (2003) Analysis Method: FTIR studies of &-phase crystal formation in stretched PVDF films. Polym Test 22:699–704. doi:10.1016/S0142-9418(03)00003-5; (c) Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta 50:69–75; (d) Zhang HP, Zhang P, Li ZH, Sun M, Wu YP, Wu HQ (2007) A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochem Commun 9:1700–1703. doi:10.1016/j.elecom.2007.03.021; (e) Ji GL, Zhu BK, Cui ZY, Zhang CF, Xu YY (2007) PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer 48:6415–6425. doi:10.1016/j.polymer.2007.08.049

    Google Scholar 

  74. (a) Boudin F, Andrieu X, Jehoulet C, Olsen II (1999) Microporous PVdF gel for lithium-ion batteries. J Power Sources 81–82:804–807. PII: S0378- 7753 99 00154–8; (b) Choi SW, Jo SM, Lee WS, Kim YR (2003) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications advanced materials 15:2027–2032. doi:10.1002/adma.200304617; (c) Montazami R, Liu S, Liu Y, Wang D, Zhang Q, Heflin JR (2011) Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly. J App Phys 109:104301–104305. doi:10.1063/1.3590166; (d) Montazami R, Wang D, Heflin JR (2012) Influence of conductive network composite structure on the electromechanical performance of ionic electroactive polymer actuators. Inter J Smart Nano Mater 3:204–213. doi:10.1080/19475411.2011.650232

    Google Scholar 

  75. Cheruvally G, Kim JK, Choi JW, Ahn JH, Shin YJ, Manuela J, Raghavan P, Kim KW, Ahn HJ, Choi DS, Song CE (2007) Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries. J Power Sources 172:863–869. doi:10.1016/j.jpowsour.2007.07.057

    Article  Google Scholar 

  76. Fernicola A, Scrosati A, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102. doi:10.1007/s11581-006-0023-5

    Article  Google Scholar 

  77. (a) Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis (fluorosulfonyl) imide [FSI]. J Power Sources 160:1308–1313. doi:10.1016/j.jpowsour.2006.02.018; (b) Balducci A, Soavi F, Mastragostino M (2006) The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl Phys A 82:627–632. doi:10.1007/s00339-005-3402-2

    Google Scholar 

  78. Sakaebe H, Matsumoto H (2003) N − Methyl-N − propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13–TFSI)–novel electrolyte base for Li battery. Electrochem Commun 5:594–598. doi:10.1016/S1388-2481(03)00137-1

    Article  Google Scholar 

  79. (a) Fuller J, Carlin RT, Osteryoung RA (1997) The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc 144:3881–3886. doi:10.1149/1.1838106; (b) Fung Y, Zhou R (1999) Room temperature molten salt as medium for lithium battery. J Power Sources 81:891–895. doi:10.1016/S0378-7753(99)00127-5

    Google Scholar 

  80. (a) Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946. doi:10.1002/anie.200702505; (b) Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294:8–15. doi:10.1016/j.memsci.2007.01.025; (c) Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159:171–178. doi:10.1016/j.jpowsour.2006.04.115

    Google Scholar 

  81. Yang CM, Kim HS, Na BK, Kum KS, Cho BW (2006) Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J Power Sources 156:574–580. doi:10.1016/j.jpowsour.2005.06.018

    Article  Google Scholar 

  82. (a) Wu CG, Lu MI, Tsai CC, Chuang HJ (2006) PVdF-HFP/metal oxide nanocomposites: the matrices for high-conducting, low-leakage porous polymer electrolytes. J Power Sources 159:295–300. doi:10.1016/j.jpowsour.2006.04.108; (b) Jeong HS, Kim DW, Jeong YU, Lee SY (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sources 195:6116–6121. doi:10.1016/j.jpowsour.2009.10.085; (c) Kim M, Han GY, Yoon KJ, Park JH (2010) Preparation of a trilayer separator and its application to lithium-ion batteries. J Power Sources 195:8302–8305. doi:10.1016/j.jpowsour.2010.07.016; (d) Liao YH, Rao MM, Li WS, Yang LT, Zhu BK, Xu R, Fu CH (2010) Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery. J Membr Sci 352:95–99. doi:10.1016/j.memsci.2010.01.064

    Google Scholar 

  83. (a) Zhang SS, Xu K, Jow TR (2004) An inorganic composite membrane as the separator of Li-ion batteries. J Power Sources 140:361–364. doi:10.1016/j.jpowsour.2004.07.034; (b) Takemura D, Aihara S, Hamano K, Kise M, Nishimura T, Urushibata H, Yoshiyasu H (2005) A powder particle size effect on ceramic powder based separator for lithium rechargeable battery. J Power Sources 146:779–783. doi:10.1016/j.jpowsour.2005.03.159; (c) Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. doi:10.1021/cm901452z

    Google Scholar 

  84. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638. doi:10.1021/jp992307u

    Article  Google Scholar 

  85. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569. doi:10.1016/j.jpowsour.2010.01.076

    Article  Google Scholar 

  86. (a) Augustin S, Hennige VD, Horpel G, Hying C (2002) Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries. Desalination 146:23–28. PII: S0011-9164(02)00465-4; (b) Hennige V, Hying C, Horpel G, Novak P, Vetter J (2006) Separator provided with asymmetrical pore structures for an electrochemical cell. US Patent Appl. 20060078791-A1. 13 Apr 2006

    Google Scholar 

  87. Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sources 196:2452–2460. doi:10.1016/j.jpowsour.2010.11.001

    Article  Google Scholar 

  88. Chieng SC, Kazacos M, Skyllas-Kazacos M (1992) Preparation and evaluation of composite membrane for vanadium redox battery applications. J Power Sources 39:11–18. doi:10.1016/0378-7753(92)85002-R

    Article  Google Scholar 

  89. Skyllas-Kazacos M, Milne NA, KazacosGC (2007) Membrane properties and behaviour in the generation 2 Vanadium Bromide Redox Flow batteries. Paper presented at the 16th international federation for heat treatment and surface engineering Congress, Brisbane, 30 Oct–2 Nov 2007

    Google Scholar 

  90. Sukkar T, Skyllas Kazacos M (2003) Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery. J Membr Sci 222:249–264

    Article  Google Scholar 

  91. Kim S, Tighe TB, Schwenzer B, Yan J, Zhang J, Liu Z, Yang M, Hickner A (2011) Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. J Appl Electrochem 41:1201–1213. doi:10.1007/s10800-011-0313-0

    Article  Google Scholar 

  92. (a) Kim DH, Seo SJ, Lee MJ, Park JS, Moon SH, Kang YS, Choi YW, Kang MS (2014) Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles. J Membr Sci 454:44–50. doi:10.1016/j.memsci.2013.11.051; (b) Maurya S, Shin SH, Sung KW, Moon SH (2014) Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications. J Power Sources 255:325–334. doi:10.1016/j.jpowsour.2014.01.047; Shinkle AA, Sleightholme AES, Griffith LD, Thompson LT, Monroe CW (2012) Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. J Power Sources 206:490–496. doi:10.1016/j.jpowsour.2010.12.096

    Google Scholar 

  93. Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335. doi:10.1016/j.rser.2013.08.001

    Article  Google Scholar 

  94. Mohammadi T, Skyllas-Kazacos M (1995) Preparation of sulfonated composite membrane for vanadium redox flow battery applications. J Membr Sci 107:35–45. SSD10376-7388 (95) 00096–8

    Google Scholar 

  95. Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29. doi:10.1016/j.memsci.2005.05.002

    Article  Google Scholar 

  96. Strathmann H (1983) Synthetic membranes and their preparation. In: Proceedings of the NATO advanced study institute on synthetic membranes: science, engineering, and applications alcabideche, Portugal, 26 June–8 July 1983

    Google Scholar 

  97. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502. PII: S0079-6700(00)00032-0

    Google Scholar 

  98. Qiu Y, Li MY, Ni JF, Zhai ML, Peng J, Xu L, Zhou HH, Li JQ, Wei GS (2007) Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. J Membr Sci 297:174–180. doi:10.1016/j.memsci.2007.03.042

    Article  Google Scholar 

  99. Vafiadis H, Skyllas-Kazacos M (2006) Evaluation of membranes for the novel vanadium bromine redox flow cell. J Membr Sci 279:394–402. doi:10.1016/j.memsci.2005.12.028

    Article  Google Scholar 

  100. (a) Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M (1991) Characteristics and performance of 1kW UNSW vanadium redox battery J Power Sources 35(4):399–404; (b) Mohammadi T, Skyllas-Kazacos M (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27(2):153–160

    Google Scholar 

  101. Sun CX, Chen J, Zhang HM, Han X, Luo QT (2010) Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J Power Sources 195:890–897. doi:10.1016/j.jpowsour.2009.08.041

    Article  Google Scholar 

  102. Gubler L, Gϋrsel SA, Scherer GG (2005) Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5(3):317–335. doi:10.1002/fuce.200400078

    Article  Google Scholar 

  103. Jia C, Liu J, Yan C (2010) A significantly improved membrane for vanadium redox flow battery. J Power Sources 195(13):4380–4383. doi:10.1016/j.jpowsour.2010.02.008

    Article  Google Scholar 

  104. Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147–1160. doi:10.1039/C0EE00770F

    Article  Google Scholar 

  105. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39. PII: S0376-7388(00)00632-3

    Google Scholar 

  106. Chen D, Kim S, Li L, Yang G, Hickner M (2012) Stable fluorinated sulfonated poly(arylene ether) membranes for vanadium redox flow batteries. RSC Adv 2:8087–8094. doi:10.1039/c2ra20834b

    Article  Google Scholar 

  107. (a) Kim S, Tighe T, Schwenzer B, Yan J, Zhang J, Liu J, Yang Z, Hickner M (2011) A chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. J Appl Electrochem 41:1201–1213. doi:10.1007/s10800-011-0313-0; (b) Jung MSJ, Parrondo J, Arges CG, Ramani V (2013) Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. J Mater Chem A 1:10458–10464. doi:10.1039/C3TA11459G

    Google Scholar 

  108. (a) Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells. J Membr Sci 272(1–2):116–124. doi:10.1016/j.memsci.2005.07.026; (b) Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2002) Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. J Power Sources 106(1–2):173–177. PII: S0378-7753(01)01053-9; (c) Antonucci PL, Arico AS, Creti P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation. Solid State Ion 125(1–4):431–437. PII: S0167-2738(99)00206-4

    Google Scholar 

  109. (a) Bauer F, Willert-Porada M (2004) Microstructural characterization of Zr-phosphate–Nafion® membranes for direct methanol fuel cell (DMFC) applications. J Membr Sci 233(1–2):141–149. doi:10.1016/j.memsci.2004.01.010; (b) Arbizzani C, Donnadio A, Pica M, Sganappa M, Varzi A, Casciola M, Mastragostino M (2010) Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells. J Power Sources 195(23):7751–7756. doi:10.1016/j.jpowsour.2009.07.034

    Google Scholar 

  110. Daiko Y, Klein LC, Kasuga T, Nogami M (2006) Hygroscopic-oxides/Nafion® hybrid electrolyte for direct methanol fuel cells. J Membr Sci 281(1–2):619–625. doi:10.1016/j.memsci.2006.04.033

    Article  Google Scholar 

  111. Yildirim MH, Curoś AR, Motuzas J, Julbe A, Stamatialis DF, Wessling M (2009) Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells. J Membr Sci 338(1–2):75–83. doi:10.1016/j.memsci.2009.04.009

    Article  Google Scholar 

  112. Ismail A, Othman N, Mustafa A (2009) Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica–aluminium oxide for direct methanol fuel cell (DMFC). J Membr Sci 329(1–2):18–29. doi:10.1016/j.memsci.2008.11.052

    Article  Google Scholar 

  113. (a) Mohammadi T, Skyllas-Kazacos M (1995) Characterisation of novel composite membrane for redox flow battery applications. J Membr Sci 98(1–2):77–87. SSD10376-7388 (94)00 178–2; (b) Chieng S, Kazacos M, Skyllas-Kazacos M (1992) Modification of Daramic, microporous separator, for redox flow battery applications. J Membr Sci 75(1–2):81–91. doi:10.1016/0376-7388(92)80008-8; (c) Tian B, Yan CW, Wang F (2004) Proton conducting composite membrane from Daramic/Nafion for vanadium redox flow battery. J Membr Sci 234(1–2):51–54. doi:10.1016/j.memsci.2004.01.012; (c) Mohammadi T, Skyllas-Kazacos M (1995) Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications. J Power Sources 56(1):91–96. SSDIO378-7753(95)02222-3

    Google Scholar 

  114. Woong JC, Venkataramani S, Kim SC (2006) Modification of Nafion membrane using poly(4-vinyl pyridine) for direct methanol fuel cell. Polym Int 55:491–499. doi:10.1002/pi.1986

    Article  Google Scholar 

  115. Zeng J, Jiang CP, Wang YH, Chen JW, Zhu SF, Zhao BJ, Wang RL (2007) Studies on polypyrrole modified nafion membrane for vanadium redox flow battery. Electrochem Commun 10:372–375. doi:10.1016/j.elecom.2007.12.025

    Article  Google Scholar 

  116. Tan S, Bélanger D (2005) Characterization and transport properties of Nafion/polyaniline composite membrane. J Phys Chem B 109:23480–23490. doi:10.1021/jp054724e

    Article  Google Scholar 

  117. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF (2007) Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. J Membr Sci 311:98–103. doi:10.1016/j.memsci.2007.11.055

    Article  Google Scholar 

  118. Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18:1232–1238. doi:10.1039/B718526J

    Article  Google Scholar 

  119. Schulte D, Drillkens J, Schulte B, Sauer DU (2010) Nafion hybrid membranes for use in redox flow batteries. J Electrochem Soc 157:A989–A992. doi:10.1149/1.3456625

    Article  Google Scholar 

  120. Hwang GJ, Ohya H (1996) Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. J Membr Sci 120:55–67. Pll S0376-7388(96)00135-4

    Google Scholar 

  121. (a) Xi J, Wu Z, Qiu X, Chen L (2007) Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources 166:531–536. doi:10.1016/j.jpowsour.2007.01.069; (b) Teng X, Zhao Y, Xi J, Wu Z, Qiu X, Chen L (2009) Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J Power Sources 189:1240–1246. doi:10.1016/j.jpowsour.2008.12.040

    Google Scholar 

  122. Zhao P, Zhang HM, Zhou HT, Yi BL (2005) Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim Acta 51:1091–1098. doi:10.1016/j.electacta.2005.06.008

    Article  Google Scholar 

  123. (a) Mohammadi T, Skyllas-Kazacos M (1995) Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications. J Power Sources 56(1):91–96; (b) Hwang GJ, Ohya H (1996) Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. J Membr Sci 120:55–67. Pll S0376-7388(96)00135-4

    Google Scholar 

  124. Chen DY, Wang SJ, Xiao M, Meng YH (2010) Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications. Energy Environ Sci 3:622–628. doi:10.1039/B917117G

    Article  Google Scholar 

  125. Qiu JY, Ni JF, Zhai ML, Peng J, Zhou HH, Li JQ, Wei GS (2007) Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery. Radiat Phys Chem 76:1703–1707. doi:10.1016/j.radphyschem.2007.01.012

    Article  Google Scholar 

  126. Xi J, Wu Z, Qiu X, Chen L (2007) Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources 166:531–536. doi:10.1016/j.jpowsour.2007.01.069

    Article  Google Scholar 

  127. Teng X, Zhao Y, Xi J, Wu Z, Qiu X, Chen L (2009) Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J Power Sources 189:1240–1246. doi:10.1016/j.jpowsour.2008.12.040

    Article  Google Scholar 

  128. Qiu J, Zhai M, Chen J, Wang Y, Peng J, Xu L, Li J, Wei G (2009) Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method. J Membr Sci 342:215–220. doi:10.1016/j.memsci.2009.06.043

    Article  Google Scholar 

  129. Qiu J, Zhao L, Zhai M, Ni J, Zhou H, Peng J, Li J, Wei G (2008) Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. J Power Sources 177:617–623. doi:10.1016/j.jpowsour.2007.11.089

    Article  Google Scholar 

  130. Chen D, Wang S, Xiao M, Meng Y (2010) Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery. Energy Convers Manag 51:2816–2824. doi:10.1016/j.enconman.2010.06.019

    Article  Google Scholar 

  131. Chen D, Wang S, Xiao M, Meng Y (2009) Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery application. Energy Environ Sci 3:622–628. doi:10.1039/B917117G

    Article  Google Scholar 

  132. Teng X, Zhao Y, Xi J, Wu Z, Qiu X, Chen L (2009) Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J Membr Sci 341:149–154. doi:10.1016/j.memsci.2009.05.051

    Article  Google Scholar 

  133. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191. doi:10.1039/c4ee01303d

    Article  Google Scholar 

  134. Mohammadi T, Skyllas Kazacos M (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27:153–160. doi:10.1023/A:1018495722379

    Article  Google Scholar 

  135. Hwang GJ, Ohya H (1997) Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. J Membr Sci 132(1):55–61. PII S0376-73 88(97)00040-9

    Google Scholar 

  136. Jian XG, Yan C, Zhang HM, Zhang SH, Liu C, Zhao P (2007) Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion-exchange membrane. Chin Chem Lett 18:1269–1272. doi:10.1016/j.cclet.2007.08.022

    Article  Google Scholar 

  137. Xing D, Zhang S, Yin C, Zhang B, Jian X (2010) Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application. J Membr Sci 354(1–2):68–73. doi:10.1016/j.memsci.2010.02.064

    Article  Google Scholar 

  138. Xing D, Zhang S, Yin C, Yan C, Jian X (2009) Preparation and characterization of chloromethylated/quaternized poly(phthalazinone ether sulfone) anion exchange membrane. Mater Sci Eng B 157(1–3):1–5. doi:10.1016/j.mseb.2008.11.019

    Article  Google Scholar 

  139. (a) Maurya S, Shin S H, Kim M K, Yun S H, Moon S H (2013) Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion. J Membr Sci 443:28–35. doi:10.1016/j.memsci.2013.04.035; (b) Maurya S, Shin SH, Sung KW, Moon SH (2014) Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications. J Power Sources 255:325–334. doi.org/10.1016/j.jpowsour.2014.01.047; (c) Fang J, Xu H, Wei X, Guo M, Lu X, Lan C, Zhang Y, Liu Y, Peng T (2013) Preparation and characterization of quaternized poly (2,2,2-trifluoroethyl methacrylate-co-Nvinylimidazole) membrane for vanadium redox flow battery. Polym Adv Technol 24:168–173. doi:10.1002/pat.3066; (d) Wang Y, Qiu J, Peng J, Xu L, Li J, Zhai M (2011) Study on the chemical stability of the anion exchange membrane of grafting dimethylaminoethyl methacrylate. J Membr Sci 376:70–77. doi:10.1016/j.memsci.2011.04.002

    Google Scholar 

  140. Cameron CG, Fitzsimmons SM (2008) Supercapacitor separators and polypyrrole composites, defence R&D Canada—Atlantic, Technical memorandum, DRDC Atlantic TM 2008-219

    Google Scholar 

  141. Kim BC, Too CO, Kwon JS, Ko JM, Wallace GG (2011) A flexible capacitor based on conducting polymer electrodes. Synth Met 161:1130–1132

    Article  Google Scholar 

  142. Fischle H, Busch D, Schmitz B, Herrmann H, Winternheimer S (2008) New separator material for supercapacitors. Paper presented at the 3rd European symposium on supercapacitors and applications. ESSCAP '08 Rome

    Google Scholar 

  143. Szubzda B, Szmaja A, Ozimek M, Mazurkiewicz S (2014) Polymer membranes as separators for supercapacitors. Appl Phys A 117:1801–1809. doi:10.1007/s00339-014-8674-y

    Article  Google Scholar 

  144. Karabelli D, Leprêtre JC, Alloin F, Sanchez JY (2011) Poly(vinylidene fluoride)-based macroporous separators for supercapacitors. Electrochim Acta 57:98–103. doi:10.1016/j.electacta.2011.03.033

    Article  Google Scholar 

  145. Yu H, Tang Q, Wu J, Lin Y, Fan L, Huang M, Lin J, Li Y, Yu F (2012) Using eggshell membrane as a separator in supercapacitor. J Power Source 206:463–468. doi:10.1016/j.jpowsour.2012.01.116

    Article  Google Scholar 

  146. Morin B (2014) A comparison of nonwoven separators for supercapacitors. http://www.dreamweaverintl.com. Accessed 02 Dec 2014

  147. Mastragostino M, Soavi F (2007) Strategies for high-performance supercapacitors for HEV. J Power Source 174:89–93. doi:10.1016/j.jpowsour.2007.06.009

    Article  Google Scholar 

  148. Hashim MA, Sa’adu L, Baharuddin M, Dasuki KA (2014) Using PVA, methacrylate and Lauroyl Chitosan as separator in supercapacitors. J Mater Sci Res 3(1):25–29. doi:10.5539/jmsr.v3n1p25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Nonjola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nonjola, P.T., Mutangwa, N., Luo, H. (2016). Membrane Separators for Electrochemical Energy Storage Technologies. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics