Skip to main content

Sample Preparation Methods for the Rapid MS Analysis of Microorganisms

  • Chapter
  • First Online:
Applications of Mass Spectrometry in Microbiology
  • 1288 Accesses

Abstract

Sample preparation is the first and the most crucial step in the identification of microorganisms. In this chapter, an overview is presented on different sample preparation steps used in the context of rapid analysis of microorganisms by mass spectrometry (MS). Sample preparation methods that might eliminate the need for culturing of the target cells (the key rate-limiting step) to obtain detectable signals are important for the rapid analysis of microorganisms. Microbial cell and biomarker enrichment through various affinity techniques are useful to enhance the sensitivity and accuracy of microbial identification. Combining the methodologies for cell lysis and biomarker solubilization will facilitate the rapid identification of microorganisms. Efficient biomarker separation techniques such as liquid chromatography may guarantee a more accurate MS identification of drug-resistance-related biomolecules in microbial mixtures or complex biological samples. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is the method of choice for the rapid identification of microorganisms. This chapter concludes with a brief discussion of the selection of MALDI matrices and matrix solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid HN, Gopal J, Wu HF. Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in matrix assisted laser desorption/ionization (MALDI-MS). Analytica Chimica Acta. 2013;767:104–11. doi:10.1016/j.aca.2012.12.054.

    Article  CAS  Google Scholar 

  • Afonso C, Fenselau C. Use of bioactive glass slides for matrix-assisted laser desorption/ionization analysis: application to microorganisms. Anal Chem. 2003;75(3):694–7.

    Article  Google Scholar 

  • Ahmad F, Wu H-F. Rapid and sensitive detection of bacteria via platinum-labeled antibodies and on-particle ionization and enrichment prior to MALDI-TOF mass spectrometry. Microchim Acta. 2013;180(5–6):485–92. doi:10.1007/s00604-013-0951-5.

    Article  CAS  Google Scholar 

  • An B, Lee S, Lee E, Lee J, Wi S, Jung H, Park W, Lee S, Chung B. Functional switching of a novel prokaryotic 2-Cys peroxiredoxin (PpPrx) under oxidative stress. Cell Stress Chaperones. 2011;16(3):317–28. doi:10.1007/s12192-010-0243-5.

    Article  CAS  Google Scholar 

  • Bhaisare ML, Abdelhamid HN, Wu B-S, Wu H-F. Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J Mater Chem B. 2014;2(29):4671–83. doi:10.1039/C4TB00528G.

    Article  CAS  Google Scholar 

  • Birmingham JG. Plasma lysis for identification of bacterial spores using ambient-pressure nonthermal discharges. Plasma Sci IEEE Trans. 2006;34(4):1270–4. doi:10.1109/TPS.2006.877740.

    Article  CAS  Google Scholar 

  • Birmingham J, Demirev P, Ho Y-P, Thomas J, Bryden W, Fenselau C. Corona plasma discharge for rapid analysis of microorganisms by mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(7):604–6. doi:10.1002/(SICI)1097-0231(19990415)13:7<604::AID-RCM529>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  • Blonder J, Goshe MB, Xiao W, Camp DG, Wingerd M, Davis RW, Smith RD. Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass spectrometry. J Proteome Res. 2004;3(3):434–44. doi:10.1021/pr034074w.

    Article  CAS  Google Scholar 

  • Boots AW, Smolinska A, van Berkel JJ, Fijten RR, Stobberingh EE, Boumans ML, Moonen EJ, Wouters EF, Dallinga JW, Van Schooten FJ. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J Breath Res. 2014;8(2):027106. doi:10.1088/1752-7155/8/2/027106.

    Article  CAS  Google Scholar 

  • Brown RN, Romine MF, Schepmoes AA, Smith RD, Lipton MS. Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC–MS/MS protein identification. J Proteome Res. 2010;9(9):4454–63. doi:10.1021/pr100215h.

    Article  CAS  Google Scholar 

  • Bundy J, Fenselau C. Lectin-based affinity capture for MALDI-MS analysis of bacteria. Anal Chem. 1999;71(7):1460–3. doi:10.1021/ac981119h.

    Article  CAS  Google Scholar 

  • Bundy JL, Fenselau C. Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. Anal Chem. 2001;73(4):751–7. doi:10.1021/ac0011639.

    Article  CAS  Google Scholar 

  • Castanha ER, Vestal M, Hattan S, Fox A, Fox KF, Dickinson D. Bacillus cereus strains fall into two clusters (one closely and one more distantly related) to Bacillus anthracis according to amino acid substitutions in small acid-soluble proteins as determined by tandem mass spectrometry. Mol Cell Probes. 2007;21(3):190–201. doi:10.1016/j.mcp.2006.11.002.

    Article  CAS  Google Scholar 

  • Chang CJ, Lin JH, Chang KC, Lai MJ, Rohini R, Hu A. Diagnosis of beta-lactam resistance in Acinetobacter baumannii using shotgun proteomics and LC-nano-electrospray ionization ion trap mass spectrometry. Anal Chem. 2013;85(5):2802–8. doi:10.1021/ac303326a.

    Article  CAS  Google Scholar 

  • Chen W-J, Tsai P-J, Chen Y-C. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria. Anal Chem. 2008;80(24):9612–21. doi:10.1021/ac802042x.

    Article  CAS  Google Scholar 

  • Chen CT, Reddy PM, Ma YR, Ho YP. Mass spectrometric identification of pathogens in foods using a zirconium hydroxide immobilization approach. Int J Mass spectrom. 2012;312:45–52. doi:10.1016/j.ijms.2011.05.014.

    Article  CAS  Google Scholar 

  • Chenau J, Fenaille F, Ezan E, Morel N, Lamourette P, Goossens PL, Becher F. Sensitive detection of Bacillus anthracis spores by immunocapture and liquid chromatography-tandem mass spectrometry. Anal Chem. 2011;83(22):8675–82. doi:10.1021/ac2020992.

    Article  CAS  Google Scholar 

  • Chenau J, Fenaille F, Simon S, Filali S, Volland H, Junot C, Carniel E, Becher F. Detection of Yersinia pestis in environmental and food samples by intact cell immunocapture and liquid chromatography-tandem mass spectrometry. Anal Chem. 2014;86(12):6144–52. doi:10.1021/ac501371r.

    Article  CAS  Google Scholar 

  • Chong BE, Wall DB, Lubman DM, Flynn SJ. Rapid profiling of E. coli proteins up to 500 kDa from whole cell lysates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom RCM. 1997;11(17):1900–8. doi:10.1002/(sici)1097-0231(199711)11:17<1900::aid-rcm95>3.0.co;2-k.

    Article  CAS  Google Scholar 

  • Christie-Oleza JA, Piña-Villalonga JM, Guerin P, Miotello G, Bosch R, Nogales B, Armengaud J. Shotgun nanoLC-MS/MS proteogenomics to document MALDI-TOF biomarkers for screening new members of the Ruegeria genus. Environ Microbiol. 2013;15(1):133–47. doi:10.1111/j.1462-2920.2012.02812.x.

    Article  CAS  Google Scholar 

  • Demirev PA, Fenselau C. Mass spectrometry in biodefense. J Mass Spectrom. 2008;43(11):1441–57. doi:10.1002/jms.1474.

    Article  CAS  Google Scholar 

  • Demirev PA, Ho Y-P, Ryzhov V, Fenselau C. Microorganism identification by mass spectrometry and protein database searches. Anal Chem. 1999;71(14):2732–8. doi:10.1021/ac990165u.

    Article  CAS  Google Scholar 

  • Demirev PA, Feldman AB, Kowalski P, Lin JS. Top-down proteomics for rapid identification of intact microorganisms. Anal Chem. 2005;77(22):7455–61. doi:10.1021/ac051419g.

    Article  CAS  Google Scholar 

  • Dickinson DN, Duc MT L, Haskins WE, Gornushkin I, Winefordner JD, Powell DH, Venkateswaran K. Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling. Appl Environ Microbiol. 2004;70(1):475–82.

    Article  CAS  Google Scholar 

  • Domin MA, Welham KJ, Ashton DS. The effect of solvent and matrix combinations on the analysis of bacteria by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom RCM. 1999;13(4):222–6. doi:10.1002/(sici)1097-0231(19990228)13:4<222::aid-rcm440>3.0.co;2-y.

    Article  CAS  Google Scholar 

  • Dubska L, Pilatova K, Dolejska M, Bortlicek Z, Frostova T, Literak I, Valik D. Surface-enhanced laser desorption ionization/time-of-flight (SELDI-TOF) mass spectrometry (MS) as a phenotypic method for rapid identification of antibiotic resistance. Anaerobe. 2011;17(6):444–7. doi:10.1016/j.anaerobe.2011.05.008.

    Article  CAS  Google Scholar 

  • Dybwad M, van der Laaken AL, Blatny JM, Paauw A. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Appl Environ Microbiol. 2013;79(17):5372–83. doi:10.1128/aem.01724-13.

    Article  CAS  Google Scholar 

  • Easterling ML, Colangelo CM, Scott RA, Amster IJ. Monitoring protein expression in whole bacterial cells with MALDI time-of-flight mass spectrometry. Anal Chem. 1998;70(13):2704–9. doi:10.1021/ac971344j.

    Article  CAS  Google Scholar 

  • El-Boubbou K, Gruden C, Huang X. Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc. 2007;129(44):13392–3. doi:10.1021/ja076086e.

    Article  CAS  Google Scholar 

  • Evason DJ, Claydon MA, Gordon DB. Effects of ion mode and matrix additives in the identification of bacteria by intact cell mass spectrometry. Rapid Commun Mass Spectrom RCM. 2000;14(8):669–72. doi:10.1002/(sici)1097-0231(20000430)14:8<669::aid-rcm932>3.0.co;2-7.

    Article  CAS  Google Scholar 

  • Everley RA, Mott TM, Wyatt SA, Toney DM, Croley TR. Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom. 2008;19(11):1621–8. doi:10.1016/j.jasms.2008.07.003.

    Article  CAS  Google Scholar 

  • Everley RA, Mott TM, Toney DM, Croley TR. Characterization of Clostridium species utilizing liquid chromatography/mass spectrometry of intact proteins. J Microbiol Methods. 2009;77(2):152–8. doi:10.1016/j.mimet.2009.01.013.

    Article  CAS  Google Scholar 

  • Fagerquist CK, Miller WG, Harden LA, Bates AH, Vensel WH, Wang G, Mandrell RE. Genomic and proteomic identification of a DNA-binding protein used in the “fingerprinting” of Campylobacter species and strains by MALDI-TOF-MS protein biomarker analysis. Anal Chem. 2005;77(15):4897–907. doi:10.1021/ac040193z.

    Article  CAS  Google Scholar 

  • Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S. Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii-host cell interactions. Mol Cell Proteomics. 2008;7(5):891–910. doi:10.1074/mcp.M700391-MCP200.

    Article  CAS  Google Scholar 

  • Fenselau C, Russell S, Swatkoski S, Edwards N. Proteomic strategies for rapid characterization of micro-organisms. Eur J Mass Spectrom. 2007;13(1):35–9.

    Article  CAS  Google Scholar 

  • Fleurbaaij F, Heemskerk AA, Russcher A, Klychnikov OI, Deelder AM, Mayboroda OA, Kuijper EJ, van Leeuwen HC, Hensbergen PJ. Capillary-electrophoresis mass spectrometry for the detection of carbapenemases in (multi-)drug-resistant Gram-negative bacteria. Anal Chem. 2014;86(18):9154–61. doi:10.1021/ac502049p.

    Article  CAS  Google Scholar 

  • Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ, Villa S, Keasling JD. Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol. 2008;11(3):233–9. doi:10.1016/j.mib.2008.04.002.

    Article  CAS  Google Scholar 

  • Giebel RA, Fredenberg W, Sandrin TR. Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res. 2008;42(4–5):931–40. doi:10.1016/j.watres.2007.09.005.

    Article  CAS  Google Scholar 

  • Gopal J, Hasan N, Wu HF. Fabrication of titanium based MALDI bacterial chips for rapid, sensitive and direct analysis of pathogenic bacteria. Biosens Bioelectron. 2013;39(1):57–63. doi:10.1016/j.bios.2012.06.036.

    Article  CAS  Google Scholar 

  • Goshe MB, Blonder J, Smith RD. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J Proteome Res. 2003;2(2):153–61. doi:10.1021/pr0255607.

    Article  CAS  Google Scholar 

  • Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4(3):310–27. doi:10.1074/mcp.M400219-MCP200.

    Article  CAS  Google Scholar 

  • Gu H, Ho P-L, Tsang KWT, Wang L, Xu B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant Enterococci and other Gram-positive bacteria at ultralow concentration. J Am Chem Soc. 2003;125(51):15702–3. doi:10.1021/ja0359310.

    Article  CAS  Google Scholar 

  • Guo Z, Liu Y, Li S, Yang Z. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water. Rapid Commun Mass Spectrom. 2009;23(24):3983–93. doi:10.1002/rcm.4338.

    Article  CAS  Google Scholar 

  • Haihong Liu ZD, Jin W, Yang R. Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2007;73(6):1899–907.

    Google Scholar 

  • Hathout Y, Setlow B, Cabrera-Martinez RM, Fenselau C, Setlow P. Small, acid-soluble proteins as biomarkers in mass spectrometry analysis of Bacillus spores. Appl Environ Microbiol. 2003;69(2):1100–7.

    Article  CAS  Google Scholar 

  • Hjerten S, Elenbring K, Kilar F, Liao JL, Chen AJ, Siebert CJ, Zhu MD. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J Chromatogr. 1987;403:47–61.

    Article  CAS  Google Scholar 

  • Ho YP, Hsu PH. Investigating the effects of protein patterns on microorganism identification by high-performance liquid chromatography-mass spectrometry and protein database searches. J Chromatogr A. 2002;976(1–2):103–11.

    Article  CAS  Google Scholar 

  • Ho KC, Tsai PJ, Lin YS, Chen YC. Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal Chem. 2004;76(24):7162–8. doi:10.1021/ac048688b.

    Article  CAS  Google Scholar 

  • Horak D, Balonova L, Mann BF, Plichta Z, Hernychova L, Novotny MV, Stulik J. Use of magnetic hydrazide-modified polymer microspheres for enrichment of Francisella tularensis glycoproteins. Soft Matter. 2012;8(9):2775–86. doi:10.1039/C2SM07036G.

    Article  CAS  Google Scholar 

  • Horneffer V, Haverkamp J, Janssen HG, ter Steeg PF, Notz R. MALDI-TOF-MS analysis of bacterial spores: wet heat-treatment as a new releasing technique for biomarkers and the influence of different experimental parameters and microbiological handling. J Am Soc Mass Spectrom. 2004;15(10):1444–54. doi:10.1016/j.jasms.2004.06.017.

    Article  CAS  Google Scholar 

  • Hu A, Lo AA, Chen CT, Lin KC, Ho YP. Identifying bacterial species using CE-MS and SEQUEST with an empirical scoring function. Electrophoresis. 2007;28(9):1387–92. doi:10.1002/elps.200600637.

    Article  CAS  Google Scholar 

  • Jackson BP, Ranville JF, Neal AL. Application of flow field flow fractionation-ICPMS for the study of uranium binding in bacterial cell suspensions. Anal Chem. 2005;77(5):1393–7. doi:10.1021/ac049278q.

    Article  CAS  Google Scholar 

  • Jones JJ, Stump MJ, Fleming RC, Lay JO Jr, Wilkins CL. Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells. Anal Chem. 2003;75(6):1340–7.

    Article  CAS  Google Scholar 

  • Kailasa SK, Wu HF. Dispersive liquid-liquid microextraction using functionalized Mg(OH)2 NPs with oleic acid as hydrophobic affinity probes for the analysis of hydrophobic proteins in bacteria by MALDI MS. Analyst. 2012;137(19):4490–6. doi:10.1039/c2an35788g.

    Article  CAS  Google Scholar 

  • Kailasa SK, Wu HF. Surface modified BaTiO3 nanoparticles as the matrix for phospholipids and as extracting probes for LLME of hydrophobic proteins in Escherichia coli by MALDI-MS. Talanta. 2013;114:283–90. doi:10.1016/j.talanta.2013.05.032.

    Article  CAS  Google Scholar 

  • Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K-i, Takahashi N, Isobe T. Concanavaline. Nat Biotech. 2003;21(6):667–72..

    Article  CAS  Google Scholar 

  • Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron MG, Simard B. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano. 2008;2(9):1777–88. doi:10.1021/nn700183g.

    Article  CAS  Google Scholar 

  • Kiehntopf M, Melcher F, Hanel I, Eladawy H, Tomaso H. Differentiation of Campylobacter species by surface-enhanced laser desorption/ionization-time-of-flight mass spectrometry. Foodborne Pathog Dis. 2011;8(8):875–85. doi:10.1089/fpd.2010.0775.

    Article  CAS  Google Scholar 

  • Krishnamurthy T, Deshpande S, Hewel J, Liu H, Wick CH, Yates Iii JR. Specific identification of Bacillus anthracis strains. Int J Mass spectrom. 2007;259(1–3):140–6..

    Article  CAS  Google Scholar 

  • Kull S, Pauly D, Stormann B, Kirchner S, Stammler M, Dorner MB, Lasch P, Naumann D, Dorner BG. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2010;82(7):2916–24. doi:10.1021/ac902909r.

    Article  CAS  Google Scholar 

  • Lasch P, Beyer W, Nattermann H, Stammler M, Siegbrecht E, Grunow R, Naumann D. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol. 2009;75(22):7229–42. doi:10.1128/aem.00857-09.

    Article  CAS  Google Scholar 

  • Lee H, Williams SKR, Wahl KL, Valentine NB. Analysis of whole bacterial cells by flow field-flow fractionation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2003;75(11):2746–52. doi:10.1021/ac020698u.

    Article  CAS  Google Scholar 

  • Lee SY, Yun SH, Lee YG, Choi CW, Leem SH, Park EC, Kim GH, Lee JC, Kim SI. Proteogenomic characterization of antimicrobial resistance in extensively drug-resistant Acinetobacter baumannii DU202. J Antimicrob Chemother. 2014;69(6):1483–91. doi:10.1093/jac/dku008.

    Article  CAS  Google Scholar 

  • Li S, Guo Z, Liu Y, Yang Z, Hui HK. Integration of microfiltration and anion-exchange nanoparticles-based magnetic separation with MALDI mass spectrometry for bacterial analysis. Talanta. 2009;80(1):313–20. doi:10.1016/j.talanta.2009.06.069.

    Article  CAS  Google Scholar 

  • Li S, Guo Z, Wu HF, Liu Y, Yang Z, Woo CH. Rapid analysis of Gram-positive bacteria in water via membrane filtration coupled with nanoprobe-based MALDI-MS. Anal Bioanal Chem. 2010;397(6):2465–76. doi:10.1007/s00216-010-3777-6.

    Article  CAS  Google Scholar 

  • Li X, Lv P, Wang L, Guo A, Ma M, Qi X. Application of high resolution pyrolysis gas chromatography/mass spectrometry (HRPGC/MS) for detecting Listeria monocytogenes. J Chromatogr B Anal Technol Biomed Life Sci. 2014;971:107–11. doi:10.1016/j.jchromb.2014.06.032.

    Article  CAS  Google Scholar 

  • Liang S, Schneider RJ. Capillary zone electrophoresis of Cowpea mosaic virus and peak identification. Electrophoresis. 2009;30(9):1572–8. doi:10.1002/elps.200800468.

    Article  CAS  Google Scholar 

  • Lin YS, Tsai PJ, Weng MF, Chen YC. Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem. 2005;77(6):1753–60. doi:10.1021/ac048990k.

    Article  CAS  Google Scholar 

  • Liu JC, Tsai PJ, Lee YC, Chen YC. Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Anal Chem. 2008;80(14):5425–32. doi:10.1021/ac800487v.

    Article  CAS  Google Scholar 

  • Liu JC, Chen WJ, Li CW, Mong KK, Tsai PJ, Tsai TL, Lee YC, Chen YC. Identification of Pseudomonas aeruginosa using functional magnetic nanoparticle-based affinity capture combined with MALDI MS analysis. Analyst. 2009;134(10):2087–94. doi:10.1039/b908069d.

    Article  CAS  Google Scholar 

  • Lundquist M, Caspersen MB, Wikstrom P, Forsman M. Discrimination of Francisella tularensis subspecies using surface enhanced laser desorption ionization mass spectrometry and multivariate data analysis. FEMS Microbiol Lett. 2005;243(1):303–10. doi:10.1016/j.femsle.2004.12.020.

    Article  CAS  Google Scholar 

  • Madonna AJ, Basile F, Ferrer I, Meetani MA, Rees JC, Voorhees KJ. On-probe sample pretreatment for the detection of proteins above 15 KDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom RCM. 2000;14(23):2220–9. doi:10.1002/1097-0231(20001215)14:23<2220::aid-rcm155>3.0.co;2-4.

    Article  CAS  Google Scholar 

  • Madonna AJ, Basile F, Furlong E, Voorhees KJ. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(13):1068–74. doi:10.1002/rcm.344.

    Article  CAS  Google Scholar 

  • Magnuson ML, Owens JH, Kelty CA. Characterization of Cryptosporidium parvum by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2000;66(11):4720–4.

    Article  CAS  Google Scholar 

  • Mandal SM, Pati BR, Ghosh AK, Das AK. Letter: influence of experimental parameters on identification of whole cell Rhizobium by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Eur J Mass Spectrom (Chichester Eng). 2007;13(2):165–71. doi:10.1255/ejms.842.

    Article  CAS  Google Scholar 

  • Mas S, Villas-Boas SG, Hansen ME, Akesson M, Nielsen J. A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnol Bioeng. 2007;96(5):1014–22. doi:10.1002/bit.21194.

    Article  CAS  Google Scholar 

  • Meetani MA, Voorhees KJ. MALDI mass spectrometry analysis of high molecular weight proteins from whole bacterial cells: pretreatment of samples with surfactants. J Am Soc Mass Spectrom. 2005;16(9):1422–6. doi:10.1016/j.jasms.2005.04.004.

    Article  CAS  Google Scholar 

  • Moura H, Woolfitt AR, Carvalho MG, Pavlopoulos A, Teixeira LM, Satten GA, Barr JR. MALDI-TOF mass spectrometry as a tool for differentiation of invasive and noninvasive Streptococcus pyogenes isolates. Fems Immunol Med Microbiol. 2008;53(3):333–42. doi:10.1111/j.1574-695X.2008.00428.x.

    Article  CAS  Google Scholar 

  • Nilsson CL. Fingerprinting of Helicobacter pylori strains by matrix-assisted laser desorption/ionization mass spectrometric analysis. Rapid Commun Mass Spectrom RCM. 1999;13(11):1067–71. doi:10.1002/(sici)1097-0231(19990615)13:11<1067::aid-rcm612>3.0.co;2-n.

    Article  CAS  Google Scholar 

  • Ochoa ML, Harrington PB. Immunomagnetic isolation of enterohemorrhagic Escherichia coli O157:H7 from ground beef and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searches. Anal Chem. 2005;77(16):5258–67. doi:10.1021/ac0502596.

    Article  CAS  Google Scholar 

  • Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK. Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. BioChemistry. 2010;49(36):7920–9. doi:10.1021/bi100729m.

    Article  CAS  Google Scholar 

  • Petr J, Ryparova O, Ranc V, Hinnerova P, Znaleziona J, Kowalska M, Knob R, Maier V, Frebort I, Lemr K, Sevcik J. Assessment of CE for the identification of microorganisms. Electrophoresis. 2009;30(3):444–9. doi:10.1002/elps.200800232.

    Article  CAS  Google Scholar 

  • Pineda FJ, Lin JS, Fenselau C, Demirev PA. Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem. 2000;72(16):3739–44.

    Article  CAS  Google Scholar 

  • Pineda FJ, Antoine MD, Demirev PA, Feldman AB, Jackman J, Longenecker M, Lin JS. Microorganism identification by matrix-assisted laser/desorption ionization mass spectrometry and model-derived ribosomal protein biomarkers. Anal Chem. 2003;75(15):3817–22. doi:10.1021/ac034069b.

    Article  CAS  Google Scholar 

  • Raftery MJ. Enrichment by organomercurial agarose and identification of cys-containing peptides from yeast cell lysates. Anal Chem. 2008;80(9):3334–41. doi:10.1021/ac702539q.

    Article  CAS  Google Scholar 

  • Reddy PM, Chang K-C, Liu Z-J, Chen C-T, Ho Y-P. Evaluation of functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria. J Biomed Nanotechnol. 2014;10:11.

    Article  CAS  Google Scholar 

  • Reolon LA, Martello CL, Schrank IS, Ferreira HB. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach. Plos One. 2014;9(11):e112596. doi:10.1371/journal.pone.0112596.

    Article  CAS  Google Scholar 

  • Ruelle V, Moualij BE, Zorzi W, Ledent P, Pauw ED. Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2004a;18(18):2013–9. doi:10.1002/rcm.1584.

    Article  CAS  Google Scholar 

  • Ruelle V, Moualij BE, Zorzi W, Ledent P, Pauw ED. Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004b;18(18):2013–9. doi:10.1002/rcm.1584.

    Article  CAS  Google Scholar 

  • Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73(4):746–50. doi:10.1021/ac0008791.

    Article  CAS  Google Scholar 

  • Scheurer SB, Rybak JN, Roesli C, Brunisholz RA, Potthast F, Schlapbach R, Neri D, Elia G. Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics. 2005;5(11):2718–28. doi:10.1002/pmic.200401163.

    Article  CAS  Google Scholar 

  • Schlosser G, Kačer P, Kuzma M, Szilágyi Z, Sorrentino A, Manzo C, Pizzano R, Malorni L, Pocsfalvi G. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of Staphylococcal Enterotoxin B. Appl Environ Microbiol. 2007;73(21):6945–52. doi:10.1128/aem.01136-07.

    Article  CAS  Google Scholar 

  • Seibold E, Bogumil R, Vorderwulbecke S, Dahouk S A, Buckendahl A, Tomaso H, Splettstoesser W. Optimized application of surface-enhanced laser desorption/ionization time-of-flight MS to differentiate Francisella tularensis at the level of subspecies and individual strains. FEMS Immunol Med Microbiol. 2007;49(3):364–73. doi:10.1111/j.1574-695X.2007.00216.x.

    Article  CAS  Google Scholar 

  • Sharma R, Dill BD, Chourey K, Shah M, VerBerkmoes NC, Hettich RL. Coupling a detergent lysis/cleanup methodology with intact protein fractionation for enhanced proteome characterization. J Proteome Res. 2012;11(12):6008–18. doi:10.1021/pr300709k.

    CAS  Google Scholar 

  • Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta. 2006;1760(4):527–37. doi:10.1016/j.bbagen.2005.12.008.

    Article  CAS  Google Scholar 

  • Shaw EI, Moura H, Woolfitt AR, Ospina M, Thompson HA, Barr JR. Identification of biomarkers of whole Coxiella burnetii phase I by MALDI-TOF mass spectrometry. Anal Chem. 2004;76(14):4017–22. doi:10.1021/ac030364k.

    Article  CAS  Google Scholar 

  • Smole SC, King LA, Leopold PE, Arbeit RD. Sample preparation of Gram-positive bacteria for identification by matrix assisted laser desorption/ionization time-of-flight. J Microbiol Methods. 2002;48(2–3):107–15.

    Article  CAS  Google Scholar 

  • Sun X, Jia H-L, Xiao C-L, Yin X-F, Yang X-Y, Lu J, He X, Li N, Li H, He Q-Y. Bacterial proteome of Streptococcus pneumoniae through multidimensional separations coupled with LC-MS/MS. OMICS J Integr Biol. 2011;15(7–8):477–82. doi:10.1089/omi.2010.0113.

    Article  CAS  Google Scholar 

  • Tait E, Perry JD, Stanforth SP, Dean JR (2014) Bacteria detection based on the evolution of enzyme-generated volatile organic compounds: determination of Listeria monocytogenes in milk samples. Analytica Chimica Acta. 848:80–7. doi:10.1016/j.aca.2014.07.029.

    Article  CAS  Google Scholar 

  • Teramoto K, Sato H, Sun L, Torimura M, Tao H. A simple intact protein analysis by MALDI-MS for characterization of ribosomal proteins of two genome-sequenced lactic acid bacteria and verification of their amino acid sequences. J Proteome Res. 2007;6(10):3899–907. doi:10.1021/pr070218 l.

    Article  CAS  Google Scholar 

  • Thompson MR, Chourey K, Froelich JM, Erickson BK, VerBerkmoes NC, Hettich RL. Experimental approach for deep proteome measurements from small-scale microbial biomass samples. Anal Chem. 2008;80(24):9517–25. doi:10.1021/ac801707s.

    Article  CAS  Google Scholar 

  • Vargha M, Takats Z, Konopka A, Nakatsu CH. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods. 2006;66(3):399–409. doi:10.1016/j.mimet.2006.01.006.

    Article  CAS  Google Scholar 

  • Victor Ryzhov YH, Catherine F. Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Appl Environ Microbiol. 2000;66(9):3828–34.

    Article  Google Scholar 

  • Wang S, Regnier FE. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J Chromatogr A. 2001;924(1–2):345–57.

    Article  CAS  Google Scholar 

  • Wang S, Zhang X, Regnier FE. Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J Chromatogr A. 2002;949(1–2):153–62.

    Article  CAS  Google Scholar 

  • Williams TL, Andrzejewski D, Lay JO, Musser SM. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom. 2003;14(4):342–51. doi:10.1016/s1044-0305(03)00065-5.

    Article  CAS  Google Scholar 

  • Yang YC, Yu H, Xiao DW, Liu H, Hu Q, Huang B, Liao WJ, Huang WF. Rapid identification of Staphylococcus aureus by surface enhanced laser desorption and ionization time of flight mass spectrometry. J Microbiol Methods. 2009;77(2):202–6. doi:10.1016/j.mimet.2009.02.004.

    Article  CAS  Google Scholar 

  • Zscheppank C, Wiegand HL, Lenzen C, Wingender J, Telgheder U. Investigation of volatile metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-GC-MS. Anal Bioanal Chem. 2014;406(26):6617–28. doi:10.1007/s00216-014-8111-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Peng Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Devi, S., Hu, A., Ho, YP. (2016). Sample Preparation Methods for the Rapid MS Analysis of Microorganisms. In: Demirev, P., Sandrin, T. (eds) Applications of Mass Spectrometry in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-26070-9_3

Download citation

Publish with us

Policies and ethics