Skip to main content

Diagnostic Applications of Nuclear Medicine: Sarcomas

Nuclear Oncology

Abstract

Bone and soft tissue tumors, while rare, account for a relatively large proportion of pediatric cancer diagnoses. The role for [18F]FDG PET/CT in the staging and prognostication of pediatric s arcomas remains an active area for research and topic of debate. [18F]FDG PET/CT clearly maintains a significant role in the detection of osseous metastasis in osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma; however, it lacks the sensitivity and specificity in detecting pulmonary metastasis when compared to conventional CT scan. [18F]FDG PET/CT predicts histologic response in osteosarcoma; however, more studies are needed to determine whether it can predict outcome in other pediatric sarcomas as a whole. While [18F]FDG PET/CT is becoming increasingly utilized in the staging of pediatric sarcomas, more research will be needed to fully understand how best to incorporate its use in the management of, or as a prognostic tool in, pediatric and young adult bone and soft tissue sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient, an imaging parameter employed with MRI

AYA:

Adolescent and young adult patient populations

BS:

Bone scintigraphy with 99mTc-diphosphonates

CIMs:

Conventional imaging modalities, including ultrasonography, plain X-ray, CT, MRI (and BS in some studies)

CMR:

Complete metabolic response on [18F]FDG PET/CT

COG:

Children’s Oncology Group

CT:

X-ray-based computed tomography

ctDNA:

Circulating tumor DNA

DFS:

Disease-free survival

DSRCT:

Desmoplastic small round cell tumor

EFS:

Event-free survival

ES:

Ewing sarcoma

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

HR:

Hazard ratio

LRFS:

Local relapse-free survival

MIP:

Maximum intensity projection image

MPNST:

Malignant peripheral nerve sheath tumor

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume as evaluated with [18F]FDG PET/CT

NF-1:

Neurofibromatosis type-1

NOS:

Not otherwise specified

NRSTS:

Non-rhabdomyosarcoma soft tissue sarcomas

OS:

Overall survival

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

ROC:

Receiver operating characteristic, a type of statistical analysis yielding a graphical plot that illustrates the diagnostic ability of a binary classifier system based on a certain discrimination threshold

SUV:

Standardized uptake value

SUVmax:

Standardized uptake value at the point/voxel of maximum uptake

SUVmean:

Average SUV in a certain whole volume of interest

SUVpeak:

SUV estimated within a small, fixed-size region of interest (ROIpeak) centered on a high-uptake part of the volume of interest

TLG:

Total lesion glycolysis

TNM:

Classification of tumors according to status of the primary tumor (T), loco-regional lymph nodes (N), and distant metastases (M)

References

  1. Ries L, Smith M, Gurney J, et al. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda: National Cancer Institute; 1999.

    Google Scholar 

  2. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776–90.

    Article  PubMed  Google Scholar 

  3. Meyers PA, Heller G, Healey J, et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol. 1992;10(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari S, Bacci G, Picci P, et al. Long-term follow-up and post-relapse survival in patients with non-metastatic osteosarcoma of the extremity treated with neoadjuvant chemotherapy. Ann Oncol. 1997;8(8):765–71.

    Article  CAS  PubMed  Google Scholar 

  5. Kempf-Bielack B, Bielack SS, Jurgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68.

    Article  PubMed  Google Scholar 

  6. Goorin AM, Harris MB, Bernstein M, et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J Clin Oncol. 2002;20(2):426–33.

    Article  CAS  PubMed  Google Scholar 

  7. Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348(8):694–701.

    Article  CAS  PubMed  Google Scholar 

  8. Womer RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walterhouse DO, Pappo AS, Meza JL, et al. Shorter-duration therapy using vincristine, dactinomycin, and lower-dose cyclophosphamide with or without radiotherapy for patients with newly diagnosed low-risk rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol. 2014;32(31):3547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arndt CA, Stoner JA, Hawkins DS, et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: children’s oncology group study D9803. J Clin Oncol. 2009;27(31):5182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Breneman JC, Lyden E, Pappo AS, et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma—a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol. 2003;21(1):78–84.

    Article  PubMed  Google Scholar 

  12. Weigel BJ, Lyden E, Anderson JR, et al. Intensive multiagent therapy, including dose-compressed cycles of ifosfamide/etoposide and vincristine/doxorubicin/cyclophosphamide, irinotecan, and radiation, in patients with high-risk rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2016;34(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  13. Malempati S, Weigel BJ, Chi YY, et al. The addition of cixutumumab or temozolomide to intensive multiagent chemotherapy is feasible but does not improve outcome for patients with metastatic rhabdomyosarcoma: a report from the Children’s Oncology Group. Cancer. 2019;125(2):290–7.

    Article  CAS  PubMed  Google Scholar 

  14. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.

    Article  PubMed  Google Scholar 

  15. Quartuccio N, Fox J, Kuk D, et al. Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015;204(1):153–60.

    Article  PubMed  Google Scholar 

  16. Hurley C, McCarville MB, Shulkin BL, et al. Comparison of 18F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer. 2016;63(8):1381–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Byun BH, Kong CB, Lim I, et al. Comparison of 18F-FDG PET/CT and 99mTc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol. 2013;42(12):1673–81.

    Article  PubMed  Google Scholar 

  18. Quartuccio N, Treglia G, Salsano M, et al. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol Oncol. 2013;47(2):97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tal AL, Doshi H, Parkar F, et al. The utility of 18FDG PET/CT versus bone scan for identification of bone metastases in a pediatric sarcoma population and a review of the literature. J Pediatr Hematol Oncol. 2021;43(2):52–8.

    Article  PubMed  Google Scholar 

  20. Chang KJ, Kong CB, Cho WH, et al. Usefulness of increased 18F-FDG uptake for detecting local recurrence in patients with extremity osteosarcoma treated with surgical resection and endoprosthetic replacement. Skeletal Radiol. 2015;44(4):529–37.

    Article  PubMed  Google Scholar 

  21. Cistaro A, Lopci E, Gastaldo L, et al. The role of 18F-FDG PET/CT in the metabolic characterization of lung nodules in pediatric patients with bone sarcoma. Pediatr Blood Cancer. 2012;59(7):1206–10.

    Article  PubMed  Google Scholar 

  22. Dharanikota A, Arjunan R, Dasappa A. Factors affecting prognosis and survival in extremity osteosarcoma. Indian J Surg Oncol. 2021;12(1):199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Byun BH, Kong CB, Lim I, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med. 2013;54(7):1053–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kong CB, Byun BH, Lim I, et al. 18F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging. 2013;40(5):728–36.

    Google Scholar 

  25. Hamada K, Tomita Y, Inoue A, et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med. 2009;23(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  26. Denecke T, Hundsdorfer P, Misch D, et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging. 2010;37(10):1842–53.

    Article  PubMed  Google Scholar 

  27. Polverari G, Ceci F, Passera R, et al. [18F]FDG PET/CT for evaluating early response to neoadjuvant chemotherapy in pediatric patients with sarcoma: a prospective single-center trial. EJNMMI Res. 2020;10(1):122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hongtao L, Hui Z, Bingshun W, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol. 2012;21(4):e165–70.

    Google Scholar 

  29. Byun BH, Kong CB, Park J, et al. Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of osteosarcoma of the extremities. J Nucl Med. 2013;54(10):1725–32.

    Article  CAS  PubMed  Google Scholar 

  30. Hawkins DS, Conrad 3rd EU, Butrynski JE, Schuetze SM, Eary JF. [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer. 2009;115(15):3519–25.

    Article  PubMed  Google Scholar 

  31. Frezza AM, Beale T, Bomanji J, et al. Is [F-18]-fluorodeoxy-D-glucose positron emission tomography of value in the management of patients with craniofacial bone sarcomas undergoing neo-adjuvant treatment? BMC Cancer. 2014;14:23.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Newman EN, Jones RL, Hawkins DS. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer. 2013;60(7):1113–7.

    Article  CAS  PubMed  Google Scholar 

  33. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27(9):1305–11.

    Article  CAS  PubMed  Google Scholar 

  34. Volker T, Denecke T, Steffen I, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.

    Article  PubMed  Google Scholar 

  35. Treglia G, Salsano M, Stefanelli A, Mattoli MV, Giordano A, Bonomo L. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol. 2012;41(3):249–56.

    Article  PubMed  Google Scholar 

  36. Sharma P, Khangembam BC, Suman KC, et al. Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging. 2013;40(7):1036–43.

    Article  CAS  PubMed  Google Scholar 

  37. Hawkins DS, Schuetze SM, Butrynski JE, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23(34):8828–34.

    Article  PubMed  Google Scholar 

  38. Raciborska A, Bilska K, Drabko K, et al. Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol. 2016;18(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  39. Gaston LL, Di Bella C, Slavin J, Hicks RJ, Choong PF. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol. 2011;40(8):1007–15.

    Google Scholar 

  40. Salem U, Amini B, Chuang HH, et al. 18F-FDG PET/CT as an indicator of survival in Ewing sarcoma of bone. J Cancer. 2017;8(15):2892–8.

    Google Scholar 

  41. El-Hennawy G, Moustafa H, Omar W, et al. Different 18F-FDG PET parameters for the prediction of histological response to neoadjuvant chemotherapy in pediatric Ewing sarcoma family of tumors. Pediatr Blood Cancer. 2020;67(11):e28605.

    Article  PubMed  Google Scholar 

  42. Schmidkonz C, Krumbholz M, Atzinger A, et al. Assessment of treatment responses in children and adolescents with Ewing sarcoma with metabolic tumor parameters derived from 18F-FDG-PET/CT and circulating tumor DNA. Eur J Nucl Med Mol Imaging. 2020;47(6):1564–75.

    Article  PubMed  CAS  Google Scholar 

  43. Eugene T, Corradini N, Carlier T, Dupas B, Leux C, Bodet-Milin C. 18F-FDG-PET/CT in initial staging and assessment of early response to chemotherapy of pediatric rhabdomyosarcomas. Nucl Med Commun. 2012;33(10):1089–95.

    Google Scholar 

  44. Federico SM, Spunt SL, Krasin MJ, et al. Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer. 2013;60(7):1128–34.

    Article  PubMed  Google Scholar 

  45. Norman G, Fayter D, Lewis-Light K, et al. An emerging evidence base for PET-CT in the management of childhood rhabdomyosarcoma: systematic review. BMJ Open. 2015;5(1):e006030.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Elmanzalawy A, Vali R, Chavhan GB, et al. The impact of (18)F-FDG PET on initial staging and therapy planning of pediatric soft-tissue sarcoma patients. Pediatr Radiol. 2020;50(2):252–60.

    Article  PubMed  Google Scholar 

  47. Wagner LM, Kremer N, Gelfand MJ, et al. Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging—a prospective trial. Cancer. 2017;123(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  48. Casey DL, Wexler LH, Fox JJ, et al. Predicting outcome in patients with rhabdomyosarcoma: role of [18F]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2014;90(5):1136–42.

    Article  PubMed  Google Scholar 

  49. Dharmarajan KV, Wexler LH, Gavane S, et al. Positron emission tomography (PET) evaluation after initial chemotherapy and radiation therapy predicts local control in rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2012;84(4):996–1002.

    Article  PubMed  Google Scholar 

  50. El-Kholy E, El Nadi E, Hafez H, et al. Added predictive value of 18F-FDG PET/CT for pediatric rhabdomyosarcoma. Nucl Med Commun. 2019;40(9):898–904.

    Article  CAS  PubMed  Google Scholar 

  51. Harrison DJ, Chi YY, Tian J, et al. Metabolic response as assessed by 18F-fluorodeoxyglucose positron emission tomography-computed tomography does not predict outcome in patients with intermediate- or high-risk rhabdomyosarcoma: a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. Cancer Med. 2021;10(3):857–66.

    Article  PubMed  Google Scholar 

  52. Herrmann K, Benz MR, Czernin J, et al. 18F-FDG-PET/CT Imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res. 2012;18(7):2024–31.

    Google Scholar 

  53. Ferrari A, Sultan I, Huang TT, et al. Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer. 2011;57(6):943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lisle JW, Eary JF, O’Sullivan J, Conrad EU. Risk assessment based on FDG-PET imaging in patients with synovial sarcoma. Clin Orthop Relat Res. 2009;467(6):1605–11.

    Article  PubMed  Google Scholar 

  55. Chang KJ, Lim I, Park JY, et al. The role of 18F-FDG PET/CT as a prognostic factor in patients with synovial sarcoma. Nucl Med Mol Imaging. 2015;49(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  56. Arora VC, Price AP, Fleming S, et al. Characteristic imaging features of desmoplastic small round cell tumour. Pediatr Radiol. 2013;43(1):93–102.

    Article  PubMed  Google Scholar 

  57. Ostermeier A, McCarville MB, Navid F, Snyder SE, Shulkin BL. FDG PET/CT imaging of desmoplastic small round cell tumor: findings at staging, during treatment and at follow-up. Pediatr Radiol. 2015;45(9):1308–15.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Black JO, Coffin CM, Parham DM, Hawkins DS, Speights RA, Spunt SL. Opportunities for improvement in pathology reporting of childhood nonrhabdomyosarcoma soft tissue sarcomas: a report from Children’s Oncology Group (COG) study ARST0332. Am J Clin Pathol. 2016;146(3):328–38.

    Article  PubMed  Google Scholar 

  59. Combemale P, Valeyrie-Allanore L, Giammarile F, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014;9(2):e85954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Khiewvan B, Macapinlac HA, Lev D, et al. The value of 18F-FDG PET/CT in the management of malignant peripheral nerve sheath tumors. Eur J Nucl Med Mol Imaging. 2014;41(9):1756–66.

    Article  CAS  PubMed  Google Scholar 

  61. Higham CS, Dombi E, Rogiers A, et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1 associated malignant peripheral nerve sheath tumors. Neuro Oncol. 2018;20(6):818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Benz MR, Czernin J, Dry SM, et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer. 2010;116(2):451–8.

    Article  CAS  PubMed  Google Scholar 

  63. Yadav D, Shamim SA, Rastogi S, Upadhyay DMR, Pandey AK, Kumar R. Role of 18F-FDG PET/computed tomography in prognostication and management of malignant peripheral nerve sheath tumors. Nucl Med Commun. 2020;41(9):924–32.

    Article  CAS  PubMed  Google Scholar 

  64. Tovmassian D, Abdul Razak M, London K. The role of [18F]FDG-PET/CT in predicting malignant transformation of plexiform neurofibromas in neurofibromatosis-1. Int J Surg Oncol. 2016;2016:6162182.

    PubMed  PubMed Central  Google Scholar 

  65. Tsai LL, Drubach L, Fahey F, Irons M, Voss S, Ullrich NJ. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol. 2012;108(3):469–75.

    Article  CAS  PubMed  Google Scholar 

  66. Nishida Y, Ikuta K, Ito S, et al. Limitations and benefits of FDG-PET/CT in NF1 patients with nerve sheath tumors: a cross-sectional/longitudinal study. Cancer Sci. 2021;112(3):1114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry L. Shulkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, S., Harrison, D.J., Parisi, M.T., Shulkin, B.L. (2022). Diagnostic Applications of Nuclear Medicine: Sarcomas. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_92-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_92-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Sarcomas
    Published:
    20 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_92-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Sarcomas
    Published:
    10 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_92-1