Skip to main content

Radiopharmaceuticals for Therapy

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

Common radionuclides used for radiometabolic therapy include 131I, 153Sm, 89Sr, 223Ra, and 90Y. This chapter will focus on therapeutic radiopharmaceuticals employed for therapy of differentiated follicular thyroid carcinomas, for therapy of pheochromocytoma/paraganglioma/neuroblastomas, for bone pain palliation, for radioimmunotherapy of lymphomas, for peptide radioreceptor therapy of neuroendocrine tumors, and for intra-arterial radioembolization of hypervascularized tumors of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCK:

Cholecystokinin

DIT:

Diiodotyrosine

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTANOC:

DOTA-1-Nal3-octreotide

DOTATATE:

DOTA-D-Phe1-Tyr3-octreotate or DOTA-Tyr3-Thre8-octreotide

DOTATOC:

DOTA-D-Phe1-Tyr3-octreotide

EDTMP:

Ethylenediamine tetramethylene phosphoric acid

GLP-1:

Glucagon-like peptide-1

GRP:

Gastrin-releasing peptide

Gy:

Gray

HACA:

Human anti-chimeric antibody

HAHA:

Human anti-human antibody

HAMA:

Human anti-mouse antibody

HEDP:

Hydro-ethylidene diphosphate

Kev:

Kiloelectronvolt

KI:

Potassium iodide

LET:

Linear energy transfer

MeV:

Megaelectronvolt

MIBG:

Meta-iodobenzylguanidine

MIT:

Monoiodotyrosine

NET:

Neuroendocrine tumor

NHL:

Non-Hodgkin’s lymphoma

NIS:

Sodium-iodide symporter

PRRT:

Peptide receptor radionuclide therapy

PSMA:

Prostate specific membrane antigen

RGD:

Tripeptide composed of l-arginine, glycine, and l-aspartic acid

RIT:

Radioimmunotherapy

RLT:

Radioligand therapy

SPECT:

Single photon emission tomography

SSTR:

Somatostatin receptors

T3:

3,5,3′-Triiodothyronine

T4:

3,5,3′,5′-Tetraiodothyronine

TAT:

Target alpha therapy

TSH:

Thyroid stimulating hormone

Suggested Readings

  1. Alsultan AA, Braat AJAT, Smits MLJ, et al. Current status and future direction of hepatic radioembolisation. Clin Oncol. 2021;33:106–16.

    Article  CAS  Google Scholar 

  2. Baum RP (Ed). Therapeutic nuclear medicine. New York: Springer; 2014.

    Google Scholar 

  3. Bodei L, Lam M, Chiesa C. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    Article  Google Scholar 

  4. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  Google Scholar 

  5. Dash A, Das T, Knapp FFR. Targeted radionuclide therapy of painful bone metastases: past developments, current status, recent advances and future directions. Curr Med Chem. 2020;27:3187–249.

    Article  CAS  Google Scholar 

  6. Ell PJ, Gambhir SS (Eds). Nuclear medicine in clinical diagnosis and treatment. 3rd ed. New York: Churchill Livingston; 2004.

    Google Scholar 

  7. Fani M, Peitl PK, Velikyan I. Current status of radiopharmaceuticals for the theranostics of neuroendocrine neoplasms. Pharmaceuticals (Basel). 2017;10(1):30.

    Article  Google Scholar 

  8. Giammarile F, Bodei L, Chiesa C, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406.

    Article  CAS  Google Scholar 

  9. Giammarile F, Chiti A, Lassmann M, et al. EANM. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  Google Scholar 

  10. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  Google Scholar 

  11. Herbert JC, Eckelman WC, Neumann RD (Eds). Nuclear medicine—diagnosis and therapy. New York: Thieme Medical Publishers; 1996.

    Google Scholar 

  12. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21:e146–56.

    Google Scholar 

  13. Hope TA, Abbott A, Colucci K, et al. NANETS/SNMMI procedure standard for somatostatin receptor-based peptide receptor radionuclide therapy with 177Lu-DOTATATE. J Nucl Med. 2019;60:937–43.

    Article  CAS  Google Scholar 

  14. IAEA. Good practice for introducing radiopharmaceuticals for clinical use. Vienna: International Atomic Energy Agency (IAEA); 2015.

    Google Scholar 

  15. IAEA. Trends in radiopharmaceuticals (ISTR-2019). Vienna: International Atomic Energy Agency (IAEA); 2020.

    Google Scholar 

  16. Knapp FF, Dash A (Eds). Radiopharmaceuticals for therapy. New Delhi: Springer; 2016.

    Google Scholar 

  17. Knapp FF, Dash A. Radiopharmaceuticals for therapy. New Delhi: Springer; 2016.

    Book  Google Scholar 

  18. Kowalsky RJ, Falen SW (Eds). Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 4rd ed. Washington, DC: American Pharmacists Association; 2020.

    Google Scholar 

  19. Kratochwil C, Afshar-Oromieh A, Kopka K, et al. Current status of prostate-specific membrane antigen targeting in nuclear medicine: clinical translation of chelator containing prostate-specific membrane antigen ligands into diagnostics and therapy for prostate cancer. Semin Nucl Med. 2016;46:405–18.

    Article  Google Scholar 

  20. Kratochwil C, Fendler WP, Eiber M, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44.

    Article  Google Scholar 

  21. Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):13S–9S.

    Article  CAS  Google Scholar 

  22. Luster M, Clarke SE, Dietlein M, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:1941–59.

    Article  CAS  Google Scholar 

  23. Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv. 2018;15:185–96.

    Article  CAS  Google Scholar 

  24. Owunwanne A, Patel M, Sadek S (Eds). The handbook of radiopharmaceuticals. New York: Springer; 1995.

    Google Scholar 

  25. Poeppel TD, Handkiewicz-Junak D, Andreeff M, et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:824–45.

    Article  CAS  Google Scholar 

  26. Prince JF, Van Den Bosch MAAJ, Nijsen JFW, et al. Efficacy of radioembolization with 166Ho-microspheres in salvage patients with liver metastases: a phase 2 study. J Nucl Med. 2018;59:582–8.

    Article  CAS  Google Scholar 

  27. Schwochau K (Ed). Technetium: chemistry and radiopharmaceuticals. Hoboken: Wiley; 2000.

    Google Scholar 

  28. Sgouros G, Bodei L, McDevitt MR, et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19:589–608.

    Article  CAS  Google Scholar 

  29. Silberstein EB, Alavi A, Balon HR, et al. The SNM practice guideline for therapy of thyroid disease with 131I 3.0*. J Nucl Med. 2012;53:1633–51.

    Article  Google Scholar 

  30. St James S, Bednarz B, Benedict S, et al. Current status of radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021;109:891–901.

    Article  Google Scholar 

  31. Stokkel MP, Handkiewicz Junak D, Lassmann M, et al. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37:2218–28.

    Article  Google Scholar 

  32. Tennvall J, Fischer M, Bischof Delaloye A, et al. EANM procedure guideline for radioimmunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2007;34:616–22.

    Article  Google Scholar 

  33. Theobald T (Ed). Sampson’s texbook of radiopharmacy. 4th ed. London: Pharmaceutical Press; 2010.

    Google Scholar 

  34. Volterrani D, Erba PA, Carrió I, Strauss HW, Mariani G (Eds). Textbook of nuclear medicine—methodology and clinical applications. Cham: Springer Nature Switzerland AG; 2019.

    Google Scholar 

  35. Welch MJ, Redvanly CS (Eds). Handbook of radiopharmaceuticals: radiochemistry and applications. Hoboken: Wiley; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Orsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orsini, F., Mazzarri, S., Puta, E., Guidoccio, F., Lorenzoni, A., Mariani, G. (2022). Radiopharmaceuticals for Therapy. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_34-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_34-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Radiopharmaceuticals for Therapy
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_34-2

  2. Original

    Radiopharmaceuticals for Therapy
    Published:
    13 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_34-1