Skip to main content

Tracers Applied in Radioguided Surgery

  • Chapter
  • First Online:
Radioguided Surgery

Abstract

Radioguided surgery (RGS) allows a surgeon to intraoperatively identify the lesions of interest. This technique relies on the accumulation of a radiotracer in the lesion(s) of interest. Such accumulation can occur via the local administration of the radiotracer, followed by local staining or passive drainage via the lymphatic system, or can occur via the systemic administration followed by retention or targeted accumulation of the radiotracer. The range of radiotracers applied in RGS varies from the radioactive isotope itself, to small molecules, peptides, antibodies, and colloids. The choice of the radionuclide depends on various factors, such as half-life, desired radiation type and energy, and (chemical) means to attach it to an active entity. An often overlooked factor is the radiation burden for the patient and the medical personnel. The introduction of optical imaging technologies, such as fluorescence and Cherenkov imaging, expands the utility of RGS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brouwer OR, Buckle T, Bunschoten A, Kuil J, Vahrmeijer AL, Wendler T, Valdes-Olmos RA, van der Poel HG, van Leeuwen FWB. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys Med Biol. 2012;57(10):3123–36.

    Article  PubMed  Google Scholar 

  2. Uren RF. Lymphatic drainage of the skin. Ann Surg Oncol. 2004;11(3 Suppl):179S–85.

    Article  PubMed  Google Scholar 

  3. Ege GN. Internal mammary lymphoscintigraphy. The rationale, technique, interpretation and clinical application: a review based on 848 cases. Radiology. 1976;118(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  4. Henze E, Schelbert HR, Collins JD, Najafi A, Barrio JR, Bennett LR. Lymphoscintigraphy with Tc-99m-labeled dextran. J Nucl Med. 1982;23(10):923–9.

    CAS  PubMed  Google Scholar 

  5. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. van Leeuwen AC, Buckle T, Bendle G, Vermeeren L, Valdes Olmos R, van der Poel HG, van Leeuwen FWB. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J Biomed Opt. 2011;16(1):016004.

    Article  PubMed  CAS  Google Scholar 

  7. Mariani G, Erba P, Villa G, Gipponi M, Manca G, Boni G, Buffoni F, Castagnola F, Paganelli G, Strauss HW. Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: the nuclear medicine perspective. J Surg Oncol. 2004;85(3):112–22.

    Article  PubMed  Google Scholar 

  8. Van den Berg NS, Buckle T, Kleinjan GI, Klop WM, Horenblas S, Van Der Poel HG, Valdes-Olmos RA, Van Leeuwen FI. Hybrid tracers for sentinel node biopsy. Q J Nucl Med Mol Imaging. 2014;58(2):193–206.

    Google Scholar 

  9. Pouw B, de Wit-van der Veen LJ, Stokkel MP, Loo CE, Vrancken Peeters MJ, Valdes Olmos RA. Heading toward radioactive seed localization in non-palpable breast cancer surgery? A meta-analysis. J Surg Oncol. 2015;111(2):185–91.

    Article  PubMed  Google Scholar 

  10. Thind CR, Tan S, Desmond S, Harris O, Ramesh HS, Chagla L, Ray A, Audisio R, SNOLL. Sentinel node and occult (impalpable) lesion localization in breast cancer. Clin Radiol. 2011;66(9):833–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lavoue V, Nos C, Clough KB, Baghaie F, Zerbib E, Poulet B, Lefrere Belda MA, Ducellier A, Lecuru F. Simplified technique of radioguided occult lesion localization (ROLL) plus sentinel lymph node biopsy (SNOLL) in breast carcinoma. Ann Surg Oncol. 2008;15(9):2556–61.

    Article  PubMed  Google Scholar 

  12. Heij HA, Rutgers EJ, de Kraker J, Vos A. Intraoperative search for neuroblastoma by MIBG and radioguided surgery with the gamma detector. Med Pediatr Oncol. 1997;28(3):171–4.

    Article  CAS  PubMed  Google Scholar 

  13. Arbizu J, Rodriguez-Fraile M, Dominguez-Prado I, Garrastachu P, Rotellar F, Sangro B, Richter JA. Whole body 18fluoro-L-dopa PET-CT: a useful tool for location and surgical guidance in primary carcinoid tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1577.

    Article  CAS  PubMed  Google Scholar 

  14. Desai DC, Arnold M, Saha S, Hinkle G, Soble D, Fry J, DePalatis LR, Mantil J, Satter M, Martin Jr EW. Correlative whole-body FDG-PET and intraoperative gamma detection of FDG distribution in colorectal cancer. Clin Positron Imaging. 2000;3(5):189–96.

    Article  PubMed  Google Scholar 

  15. Krag DN, Ford PV, Patel M, Schneider PD, Goodnight Jr JE. A simplified technique to resect abnormal bony radiolocalizations using a gamma counter. Surg Oncol. 1992;1(5):371–7.

    Article  CAS  PubMed  Google Scholar 

  16. Martin DT, Hinkle GH, Tuttle S, Olsen J, Nabi H, Houchens D, Thurston M, Martin Jr EW. Intraoperative radioimmunodetection of colorectal tumors with a hand-held radiation detector. Am J Surg. 1985;150:672–5.

    Article  CAS  PubMed  Google Scholar 

  17. Agnese DM, Abdessalam SF, Burak Jr WE, Arnold MW, Soble D, Hinkle GH, Young D, Khazaeli MB, Martin Jr EW. Pilot study using a humanized CC49 monoclonal antibody (HuCC49DeltaCH2) to localize recurrent colorectal carcinoma. Ann Surg Oncol. 2004;11(2):197–202.

    Article  PubMed  Google Scholar 

  18. Nieroda CA, Milenic DE, Colcher D, Schlom J. Monoclonal antibodies for use in radioimmunoguided surgery (RIGS). In: Martin Jr EW, editor. Radioimmunoguided surgery (RIGS) in the detection of colorectal cancer. Austin: R. G. Landes Company; 1994. p. 7–27.

    Google Scholar 

  19. de Labriolle-Vaylet C, Cattan P, Sarfati E, Wioland M, Billotey C, Brocheriou C, Rouvier E, de Roquancourt A, Rostene W, Askienazy S, Barbet J, Milhaud G, Gruaz-Guyon A. Successful surgical removal of occult metastases of medullary thyroid carcinoma recurrences with the help of immunoscintigraphy and radioimmunoguided surgery. Clin Cancer Res. 2000;6(2):363–71.

    PubMed  Google Scholar 

  20. Sharkey RM, Chang CH, Rossi EA, McBride WJ, Goldenberg DM. Pretargeting: taking an alternate route for localizing radionuclides. Tumour Biol. 2012;33(3):591–600.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83.

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Leeuwen FWB, Hardwick JC, van Erkel AR. Luminescence-based imaging approaches in the field of interventional (molecular) imaging. Radiology. 2015;276(1):12–29.

    Article  PubMed  Google Scholar 

  23. Chin PTK, Welling MM, Meskers SC, Valdes Olmos RA, Tanke H, van Leeuwen FWB. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–91.

    Article  CAS  PubMed  Google Scholar 

  24. Selverstone B, Sweet WH, Robinson CV. The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann Surg. 1949;130(4):643–51.

    Article  PubMed Central  Google Scholar 

  25. Woolfenden JM, Nevin WS, Barber HB, Donahue DJ. Lung cancer detection using a miniature sodium iodide detector and cobalt-57 bleomycin. Chest. 1984;85(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  26. Schattner A, Cohen A, Wolfson L, Melloul M. Unexplained systemic symptoms and Gallium-67 – guided decisions. Am J Med Sci. 2001;321(3):198–200.

    Article  CAS  PubMed  Google Scholar 

  27. Kaemmerer D, Prasad V, Daffner W, Haugvik SP, Senftleben S, Baum RP, Hommann M. Radioguided surgery in neuroendocrine tumors using Ga-68-labeled somatostatin analogs: a pilot study. Clin Nucl Med. 2012;37(2):142–7.

    Article  PubMed  Google Scholar 

  28. Heuveling DA, van Schie A, Vugts DJ, Hendrikse NH, Yaqub M, Hoekstra OS, Karagozoglu KH, Leemans CR, van Dongen GA, de Bree R. Pilot study on the feasibility of PET/CT lymphoscintigraphy with 89Zr-nanocolloidal albumin for sentinel node identification in oral cancer patients. J Nucl Med. 2013;54(4):585–9.

    Article  CAS  PubMed  Google Scholar 

  29. Collamati F, Pepe A, Bellini F, Bocci V, Chiodi G, Cremonesi M, De Lucia E, Ferrari ME, Frallicciardi PM, Grana CM, Marafini M, Mattei I, Morganti S, Patera V, Piersanti L, Recchia L, Russomando A, Sarti A, Sciubba A, Senzacqua M, Camillocci ES, Voena C, Pinci D, Faccini R. Toward radioguided surgery with beta(−) decays: uptake of a somatostatin analogue, DOTATOC, in meningioma and high-grade glioma. J Nucl Med. 2015;56(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  30. Gommans GM, Gommans E, van der Zant FM, Teule GJ, van der Schors TG, de Waard JW. 99mTc Nanocoll: a radiopharmaceutical for sentinel node localisation in breast cancer – in vitro and in vivo results. Appl Radiat Isot. 2009;67(9):1550–8.

    Article  CAS  PubMed  Google Scholar 

  31. Panareo S, Carcoforo P, Lanzara S, Corcione S, Bagatin E, Casali M, Costanzo A, Basaglia E, Feggi LM. Radiolabelled somatostatin analogs for diagnosis and radio-guided surgery of neuroendocrine breast cancer undetectable with conventional imaging procedures. Breast. 2008;17(1):111–4.

    Article  CAS  PubMed  Google Scholar 

  32. Gallowitsch HJ, Fellinger J, Mikosch P, Kresnik E, Lind P. Gamma probe-guided resection of a lymph node metastasis with I-123 in papillary thyroid carcinoma. Clin Nucl Med. 1997;22(9):591–2.

    Article  CAS  PubMed  Google Scholar 

  33. Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian F, Old L, Fong Y, Larson SM. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008;22(2):386–91.

    Article  PubMed  Google Scholar 

  34. Hinkle GH, Laven DL. Radionuclides. In: Martin Jr EW, editor. Radioimmunoguided Surgery (RIGS) in the detection and treatment of colorectal cancer. Austin: R. G. Landes Company; 1994. p. 29–39.

    Google Scholar 

  35. Jager W, Feistel H, Paterok EM, Ronay G, Tulusan AH, Wolf F, Lang N. Resection guided by antibodies (REGAJ): a diagnostic procedure during second-look operation in ovarian cancer patients. Br J Cancer Suppl. 1990;10:18–20.

    CAS  PubMed  Google Scholar 

  36. Ubhi CS, Hardy JG, Pegg CA. Mediastinal parathyroid adenoma: a new method of localization. Br J Surg. 1984;71(11):859–60.

    Article  CAS  PubMed  Google Scholar 

  37. Bartholoma MD, Louie AS, Valliant JF, Zubieta J. Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev. 2010;110(5):2903–20.

    Article  CAS  PubMed  Google Scholar 

  38. Dewanjee MK. The chemistry of 99mTc-labeled radiopharmaceuticals. Semin Nucl Med. 1990;20(1):5–27.

    Article  CAS  PubMed  Google Scholar 

  39. Hetrakul N, Civelek AC, Stagg CA, Udelsman R. In vitro accumulation of technetium-99m-sestamibi in human parathyroid mitochondria. Surgery. 2001;130(6):1011–8.

    Article  CAS  PubMed  Google Scholar 

  40. Nazari B, Azizmohammadi Z, Rajaei M, Karami M, Javadi H, Assadi M, Asli IN. Role of 99mTc-ubiquicidin 29–41 scintigraphy to monitor antibiotic therapy in patients with orthopedic infection: a preliminary study. Nucl Med Commun. 2011;32(8):745–51.

    Article  CAS  PubMed  Google Scholar 

  41. Eshima D, Eshima LA, Gotti NM, Herda SC, Algozine CA, Burris TG, Vansant JP, Alazraki NP, Taylor AT. Technetium-99m-sulfur colloid for lymphoscintigraphy: effects of preparation parameters. J Nucl Med. 1996;37(9):1575–8.

    CAS  PubMed  Google Scholar 

  42. Vera DR, Wallace AM, Hoh CK, Mattrey RF. A synthetic macromolecule for sentinel node detection: (99m)Tc-DTPA-mannosyl-dextran. J Nucl Med. 2001;42(6):951–9.

    CAS  PubMed  Google Scholar 

  43. Hubalewska-Dydejczyk A, Kulig J, Szybinski P, Mikolajczak R, Pach D, Sowa-Staszczak A, Fross-Baron K, Huszno B. Radio-guided surgery with the use of [99mTc-EDDA/HYNIC]octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract. Eur J Nucl Med Mol Imaging. 2007;34(10):1545–55.

    Article  CAS  PubMed  Google Scholar 

  44. Linehan DC, Hill AD, Tran KN, Yeung H, Yeh SD, Borgen PI, Cody 3rd HS. Sentinel lymph node biopsy in breast cancer: unfiltered radioisotope is superior to filtered. J Am Coll Surg. 1999;188(4):377–81.

    Article  CAS  PubMed  Google Scholar 

  45. Higashi H, Natsugoe S, Uenosono Y, Ehi K, Arigami T, Nakabeppu Y, Nakajo M, Aikou T. Particle size of tin and phytate colloid in sentinel node identification. J Surg Res. 2004;121(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  46. Tsopelas C. Particle size analysis of (99m)Tc-labeled and unlabeled antimony trisulfide and rhenium sulfide colloids intended for lymphoscintigraphic application. J Nucl Med. 2001;42(3):460–6.

    CAS  PubMed  Google Scholar 

  47. Hodgson N, Zabel P, Mattar AG, Engel CJ, Girvan D, Holliday R. A new radiocolloid for sentinel node detection in breast cancer. Ann Surg Oncol. 2001;8(2):133–7.

    Article  CAS  PubMed  Google Scholar 

  48. Lombardi A, Nigri G, Scopinaro F, Maggi S, Mattei M, Bonifacino A, Parisella M, Soluri A, Amanti C. High-resolution, handheld camera use for occult breast lesion localization plus sentinel node biopsy (SNOLL): A single-institution experience with 186 patients. Surgeon. 2015;13(2):69–72.

    Article  PubMed  Google Scholar 

  49. Mirzaei S, Rodrigues M, Hoffmann B, Knoll P, Riegler-Keil M, Kreuzer W, Salzer H, Kohn H, Polyak A, Janoki GA. Sentinel lymph node detection with large human serum albumin colloid particles in breast cancer. Eur J Nucl Med Mol Imaging. 2003;30(6):874–8.

    Article  CAS  PubMed  Google Scholar 

  50. Jeschke S, Beri A, Grull M, Ziegerhofer J, Prammer P, Leeb K, Sega W, Janetschek G. Laparoscopic radioisotope-guided sentinel lymph node dissection in staging of prostate cancer. Eur Urol. 2008;53(1):126–32.

    Article  PubMed  Google Scholar 

  51. Reasbeck PG, Manktelow A, McArthur AM, Packer SG, Berkeley BB. An evaluation of pelvic lymphoscintigraphy in the staging of colorectal carcinoma. Br J Surg. 1984;71(12):936–40.

    Article  CAS  PubMed  Google Scholar 

  52. Xavier NL, Amaral BB, Cerski CT, Fuchs SC, Spiro BL, Oliveira OL, Menke CH, Biazus JV, Cavalheiro JA, Schwartsmann G. Sentinel lymph node identification and sampling in women with early breast cancer using 99m Tc labelled dextran 500 and patent blue V dye. Nucl Med Commun. 2001;22(10):1109–17.

    Article  CAS  PubMed  Google Scholar 

  53. Marcinow AM, Hall N, Byrum E, Teknos TN, Old MO, Agrawal A. Use of a novel receptor-targeted (CD206) radiotracer, 99mTc-tilmanocept, and SPECT/CT for sentinel lymph node detection in oral cavity squamous cell carcinoma: initial institutional report in an ongoing phase 3 study. JAMA Otolaryngol Head Neck Surg. 2013;139(9):895–902.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SP, Faries MB, Averbook BJ, Martinez SR, Puleo CA, Messina JL, Christman L, Wallace AM. Combined analysis of phase III trials evaluating [(9)(9)mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol. 2013;20(2):680–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wallace AM, Han LK, Povoski SP, Deck K, Schneebaum S, Hall NC, Hoh CK, Limmer KK, Krontiras H, Frazier TG, Cox C, Avisar E, Faries M, King DW, Christman L, Vera DR. Comparative evaluation of [(99m)tc]tilmanocept for sentinel lymph node mapping in breast cancer patients: results of two phase 3 trials. Ann Surg Oncol. 2013;20(8):2590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aras G, Gultekin SS, Kucuk NO, Demirer S, Tug T. Intraoperative gamma probe guidance with 99mTc-pertechnetate in the completion thyroidectomy. Ann Nucl Med. 2009;23(5):421–6.

    Article  PubMed  Google Scholar 

  57. Mandalapu BP, Amato M, Stratmann HG. Technetium Tc 99m sestamibi myocardial perfusion imaging: current role for evaluation of prognosis. Chest. 1999;115(6):1684–94.

    Article  CAS  PubMed  Google Scholar 

  58. Duarte GM, Cabello C, Torresan RZ, Alvarenga M, Telles GH, Bianchessi ST, Caserta N, Segala SR, de Lima MC, Etchebehere EC, Camargo EE. Radioguided Intraoperative Margins Evaluation (RIME): preliminary results of a new technique to aid breast cancer resection. Eur J Surg Oncol. 2007;33(10):1150–7.

    Article  CAS  PubMed  Google Scholar 

  59. Vilela Filho O, Carneiro Filho O. Gamma probe-assisted brain tumor microsurgical resection: a new technique. Arq Neuropsiquiatr. 2002;60:1042–7.

    Article  PubMed  Google Scholar 

  60. Martinez DA, King DR, Romshe C, Lozano RA, Morris JD, O’Dorisio MS, Martin Jr EW. Intraoperative identification of parathyroid gland pathology: a new approach. J Pediatr Surg. 1995;30(9):1306–9.

    Article  CAS  PubMed  Google Scholar 

  61. Placzkowski K, Christian R, Chen H. Radioguided parathyroidectomy for recurrent parathyroid cancer. Clin Nucl Med. 2007;32(5):358–60.

    Article  PubMed  Google Scholar 

  62. Ikeda Y, Takayama J, Takami H. Minimally invasive radioguided parathyroidectomy for hyperparathyroidism. Ann Nucl Med. 2010;24(4):233–40.

    Article  PubMed  Google Scholar 

  63. Garcia-Talavera P, Gonzalez-Selma ML, Ruiz M, Gamazo C, Sainz-Esteban A, Villanueva JG, Olmos R. The value of early SPECT/CT and hand-held gamma-camera in radio-guided surgery: a case of a hard-to-locate parathyroid adenoma. Clin Nucl Med. 2014;39(11):1009–11.

    Article  PubMed  Google Scholar 

  64. Mariani G, Gulec SA, Rubello D, Boni G, Puccini M, Pelizzo MR, Manca G, Casara D, Sotti G, Erba P, Volterrani D, Giuliano AE. Preoperative localization and radioguided parathyroid surgery. J Nucl Med. 2003;44(9):1443–58.

    PubMed  Google Scholar 

  65. Al-Saeedi F. Role of 99mTc-(V)DMSA in detecting tumor cell proliferation. Anal Chem Insights. 2007;2:81–3.

    PubMed  PubMed Central  Google Scholar 

  66. Adams S, Acker P, Lorenz M, Staib-Sebler E, Hor G. Radioisotope-guided surgery in patients with pheochromocytoma and recurrent medullary thyroid carcinoma: a comparison of preoperative and intraoperative tumor localization with histopathologic findings. Cancer. 2001;92(2):263–70.

    Article  CAS  PubMed  Google Scholar 

  67. Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, Murrey Jr DA, Knopp MV, Martin Jr EW. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Robinson LA, Preksto D, Muro-Cacho C, Hubbell DS. Intraoperative gamma probe-directed biopsy of asymptomatic suspected bone metastases. Ann Thorac Surg. 1998;65(5):1426–32.

    Article  CAS  PubMed  Google Scholar 

  69. Axelsson CK, Nielsen BP, Graff J. Radioisotope-guided surgical biopsy of costal metastases in breast cancer patients. Scand J Surg. 2002;91(4):333–5.

    CAS  PubMed  Google Scholar 

  70. von Meyenfeldt EM, Siebenga J, van der Pol HA, Schreurs WM, Hulsewe KW. Radionuclide-guided biopsy of bone lesions in cancer patients; a reliable, well-tolerated technique. Eur J Surg Oncol. 2014;40(2):193–6.

    Article  Google Scholar 

  71. Ind TE, Granowska M, Britton KE, Morris G, Lowe DG, Hudson CN, Shepherd JH. Peroperative radioimmunodetection of ovarian carcinoma using a hand-held gamma detection probe. Br J Cancer. 1994;70(6):1263–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hladik P, Vizda J, Bedrna J, Simkovic D, Strnad L, Smejkal K, Voboril Z. Immunoscintigraphy and intra-operative radioimmunodetection in the treatment of colorectal carcinoma. Colorectal Dis. 2001;3(6):380–6.

    Article  CAS  PubMed  Google Scholar 

  73. Mansi L, Di Lieto E, Rambaldi PF, Bergaminelli C, Fallanca F, Vicidomini G, Cuccurullo V, Mancusi R. Preliminary experience with radioimmuno-guided surgery of primary neoplasms of the lung. Minerva Chir. 1998;53(5):369–72.

    CAS  PubMed  Google Scholar 

  74. Mansi L, Rambaldi PF, Panza N, Esposito D, Esposito V, Pastore V. Diagnosis and radioguided surgery with 111In-pentetreotide in a patient with paraneoplastic Cushing’s syndrome due to a bronchial carcinoid. Eur J Endocrinol. 1997;137(6):688–90.

    Article  CAS  PubMed  Google Scholar 

  75. Ohrvall U, Westlin JE, Nilsson S, Juhlin C, Rastad J, Lundqvist H, Akerstrom G. Intraoperative gamma detection reveals abdominal endocrine tumors more efficiently than somatostatin receptor scintigraphy. Cancer. 1997;80(12 Suppl):2490–4.

    Article  CAS  PubMed  Google Scholar 

  76. Adams S, Baum RP, Hertel A, Wenisch HJ, Staib-Sebler E, Herrmann G, Encke A, Hor G. Intraoperative gamma probe detection of neuroendocrine tumors. J Nucl Med. 1998;39(7):1155–60.

    CAS  PubMed  Google Scholar 

  77. Grossrubatscher E, Vignati F, Dalino P, Possa M, Belloni PA, Vanzulli A, Bramerio M, Marocchi A, Rossetti O, Zurleni F, Loli P. Use of radioguided surgery with [111In]-pentetreotide in the management of an ACTH-secreting bronchial carcinoid causing ectopic Cushing’s syndrome. J Endocrinol Invest. 2005;28(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  78. Gay E, Vuillez JP, Palombi O, Brard PY, Bessou P, Passagia JG. Intraoperative and postoperative gamma detection of somatostatin receptors in bone-invasive en plaque meningiomas. Neurosurgery. 2005;57(1 Suppl):107–13; discussion 107–13.

    PubMed  PubMed Central  Google Scholar 

  79. Krag DN, Haseman MK, Ford P, Smith L, Taylor MH, Schneider P, Goodnight JE. Gamma probe location of 111indium-labeled B72.3: an extension of immunoscintigraphy. J Surg Oncol. 1992;51(4):226–30.

    Article  CAS  PubMed  Google Scholar 

  80. Muxi A, Pons F, Vidal-Sicart S, Setoain FJ, Herranz R, Novell F, Fernandez RM, Trias M, Setoain J. Radioimmunoguided surgery of colorectal carcinoma with an 111In-labelled anti-TAG72 monoclonal antibody. Nucl Med Commun. 1999;20(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  81. Anderson RS, Eifert B, Tartt S, King P. Radioimmunoguided surgery using indium-111 capromab pendetide (PROSTASCINT) to diagnose supraclavicular metastasis from prostate cancer. Urology. 2000;56(4):669.

    Article  CAS  PubMed  Google Scholar 

  82. Le Doussal JM, Gruaz-Guyon A, Martin M, Gautherot E, Delaage M, Barbet J. Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: imaging of tumors hosted in nude mice. Cancer Res. 1990;50(11):3445–52.

    PubMed  Google Scholar 

  83. Eckelman WC, Rzeszotarski WJ, Siegel BA, Kubota H, Chelliah M, Stevenson J, Reba RC. Chemical and biological properties of isolated radiolabeled bleomycin preparations. J Nucl Med. 1975;16(11):1033–7.

    CAS  PubMed  Google Scholar 

  84. Lavender JP, Lowe J, Barker JR, Burn JI, Chaudhri MA. Gallium 67 citrate scanning in neoplastic and inflammatory lesions. Br J Radiol. 1971;44:361–6.

    Article  CAS  PubMed  Google Scholar 

  85. Weiner R. The role of transferrin and other receptors in the mechanism of 67Ga localization. Int J Rad Appl Instrum, Part B, Nucl Med Biol. 1990;17(1):141–9.

    Article  CAS  Google Scholar 

  86. Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjum Chem. 1992;3(6):433–70.

    Article  CAS  Google Scholar 

  87. Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19(2):2135–65.

    Article  PubMed  CAS  Google Scholar 

  88. Bourdoiseau M. Iodine radiochemistry and radiopharmaceutical product labeling. Int J Rad Appl Instrum B, Nucl Med Biol. 1986;13(2):83–8.

    Article  CAS  Google Scholar 

  89. Rossouw DD, Macheli L. Large-scale synthesis of no-carrier-added [123I]mIBG, using two different stannylated precursors. J Label Compd Radiopharm. 2009;52:499–503.

    Article  CAS  Google Scholar 

  90. Shimotake T, Tsuda T, Aoi S, Fumino S, Iwai N. Iodine 123 metaiodobenzylguanidine radio-guided navigation surgery for recurrent medullary thyroid carcinoma in a girl with multiple endocrine neoplasia type 2B. J Pediatr Surg. 2005;40(10):1643–6.

    Article  PubMed  Google Scholar 

  91. Martelli H, Ricard M, Larroquet M, Wioland M, Paraf F, Fabre M, Josset P, Helardot PG, Gauthier F, Terrier-Lacombe MJ, Michon J, Hartmann O, Tabone MD, Patte C, Lumbroso J, Gruner M. Intraoperative localization of neuroblastoma in children with 123I- or 125I-radiolabeled metaiodobenzylguanidine. Surgery. 1998;123(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  92. Einspieler I, Novotny A, Okur A, Essler M, Martignoni ME. First experience with image-guided resection of paraganglioma. Clin Nucl Med. 2014;39(8):e379–81.

    Article  PubMed  Google Scholar 

  93. Ricard M, Tenenbaum F, Schlumberger M, Travagli JP, Lumbroso J, Revillon Y, Parmentier C. Intraoperative detection of pheochromocytoma with iodine-125 labelled meta-iodobenzylguanidine: a feasibility study. Eur J Nucl Med. 1993;20(5):426–30.

    Article  CAS  PubMed  Google Scholar 

  94. Cuntz MC, Levine EA, O’Dorisio TM, Watson JC, Wray DA, Espenan GD, McKnight C, Meier JR, Weber LJ, Mera R, O’Dorisio MS, Woltering EA. Intraoperative gamma detection of 125I-lanreotide in women with primary breast cancer. Ann Surg Oncol. 1999;6(4):367–72.

    Article  CAS  PubMed  Google Scholar 

  95. Woltering EA, Barrie R, O’Dorisio TM, O’Dorisio MS, Nance R, Cook DM. Detection of occult gastrinomas with iodine 125-labeled lanreotide and intraoperative gamma detection. Surgery. 1994;116(6):1139–46; discussion 1146–37.

    CAS  PubMed  Google Scholar 

  96. Schirmer WJ, O’Dorisio TM, Schirmer TP, Mojzisik CM, Hinkle GH, Martin Jr EW. Intraoperative localization of neuroendocrine tumors with 125I-TYR(3)-octreotide and a hand-held gamma-detecting probe. Surgery. 1993;114(4):745–51; discussion 751–42.

    CAS  PubMed  Google Scholar 

  97. Dawson PM, Blair SD, Begent RH, Kelly AM, Boxer GM, Theodorou NA. The value of radioimmunoguided surgery in first and second look laparotomy for colorectal cancer. Dis Colon Rectum. 1991;34(3):217–22.

    Article  CAS  PubMed  Google Scholar 

  98. Gu J, Zhao J, Li Z, Yang Z, Zhang J, Gao Z, Wang Y, Xu G. Clinical application of radioimmunoguided surgery in colorectal cancer using 125I-labeled carcinoembryonic antigen-specific monoclonal antibody submucosally. Dis Colon Rectum. 2003;46(12):1659–66.

    Article  PubMed  Google Scholar 

  99. Percivale P, Bertoglio S, Meszaros P, Canavese G, Cafiero F, Gipponi M, Campora E, Gasco M, Badellino F. Radioimmunoguided surgery after primary treatment of locally advanced breast cancer. J Clin Oncol. 1996;14(5):1599–603.

    CAS  PubMed  Google Scholar 

  100. Percivale P, Bertoglio S, Meszaros P, Schenone F, Gipponi M, Moresco L, Cosso M, Badellino F. Radioimmunoguided surgery with different iodine-125 radiolabeled monoclonal antibodies in recurrent colorectal cancer. Semin Surg Oncol. 1998;15(4):231–4.

    Article  CAS  PubMed  Google Scholar 

  101. Martin Jr EW, Tuttle SE, Rousseau M, Mojzisik CM, O’Dwyer PJ, Hinkle GH, Miller EA, Goodwin RA, Oredipe OA, Barth RF, et al. Radioimmunoguided surgery: intraoperative use of monoclonal antibody 17-1A in colorectal cancer. Hybridoma. 1986;5 Suppl 1:S97–108.

    PubMed  Google Scholar 

  102. Nieroda CA, Mojzisik C, Hinkle G, Thurston MO, Martin Jr EW. Radioimmunoguided surgery (RIGS) in recurrent colorectal cancer. Cancer Detect Prev. 1991;15(3):225–9.

    CAS  PubMed  Google Scholar 

  103. O’Dwyer PJ, Mojzisik CM, Hinkle GH, Rousseau M, Olsen J, Tuttle SE, Barth RF, Thurston MO, McCabe DP, Farrar WB, et al. Intraoperative probe-directed immunodetection using a monoclonal antibody. Arch Surg. 1986;121(12):1391–4.

    Article  PubMed  Google Scholar 

  104. Wang C, Wang Y, Su X, Lin B, Xu X, Zhang M, Li J, Xu G. [Iodine-125 labeled monoclonal antibody 3H11: in radioimmunoguided surgery for primary gastric cancer]. Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery]. 2000;38(7):507–9.

    CAS  Google Scholar 

  105. Gray RJ, Giuliano R, Dauway EL, Cox CE, Reintgen DS. Radioguidance for nonpalpable primary lesions and sentinel lymph node(s). Am J Surg. 2001;182(4):404–6.

    Article  CAS  PubMed  Google Scholar 

  106. van Riet YE, Maaskant AJ, Creemers GJ, van Warmerdam LJ, Jansen FH, van de Velde CJ, Rutten HJ, Nieuwenhuijzen GA. Identification of residual breast tumour localization after neo-adjuvant chemotherapy using a radioactive 125 Iodine seed. Eur J Surg Oncol. 2010;36(2):164–9.

    Article  PubMed  Google Scholar 

  107. Alderliesten T, Loo CE, Pengel KE, Rutgers EJ, Gilhuijs KG, Vrancken Peeters MJ. Radioactive seed localization of breast lesions: an adequate localization method without seed migration. Breast J. 2011;17(6):594–601.

    Article  PubMed  Google Scholar 

  108. Donker M, Drukker CA, Valdes Olmos RA, Rutgers EJ, Loo CE, Sonke GS, Wesseling J, Alderliesten T, Vrancken Peeters MJ. Guiding breast-conserving surgery in patients after neoadjuvant systemic therapy for breast cancer: a comparison of radioactive seed localization with the ROLL technique. Ann Surg Oncol. 2013;20(8):2569–75.

    Article  PubMed  Google Scholar 

  109. Hughes JH, Mason MC, Gray RJ, McLaughlin SA, Degnim AC, Fulmer JT, Pockaj BA, Karstaedt PJ, Roarke MC. A multi-site validation trial of radioactive seed localization as an alternative to wire localization. Breast J. 2008;14(2):153–7.

    Article  PubMed  Google Scholar 

  110. Moore GE. Use of radioactive diiodofluorescein in the diagnosis and localization of brain tumors. Science. 1948;107:569–71.

    Article  CAS  PubMed  Google Scholar 

  111. Ashkenazy M, Davis L, Martin J. An evaluation of the technic and results of the radioactive di-iodo-fluorescein test for the localization of intracranial lesions. J Neurosurg. 1951;8(3):300–14.

    Article  CAS  PubMed  Google Scholar 

  112. Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106(2745):130–1.

    Article  CAS  PubMed  Google Scholar 

  113. Morris Jr AC, Barclay TR, Tanida R, Nemcek JV. A miniaturized probe for detecting radioactivity at thyroid surgery. Phys Med Biol. 1971;16(3):397–404.

    Article  PubMed  Google Scholar 

  114. Scurry WC, Lamarre E, Stack B. Radioguided neck dissection in recurrent metastatic papillary thyroid carcinoma. Am J Otolaryngol. 2006;27(1):61–3.

    Article  PubMed  Google Scholar 

  115. Rubello D, Salvatori M, Ardito G, Mariani G, Al-Nahhas A, Gross MD, Muzzio PC, Pelizzo MR. Iodine-131 radio-guided surgery in differentiated thyroid cancer: outcome on 31 patients and review of the literature. Biomed Pharmacother. 2007;61(8):477–81.

    Article  CAS  PubMed  Google Scholar 

  116. Fasshauer H, Freundlieb O, Dostal G, Littmann K, Tharandt L, Strotges MW. Intraoperative localization of pheochromocytoma metastases using 131I-meta-benzylguanidine. Nuklearmedizin. 1984;23(4):203–5.

    CAS  PubMed  Google Scholar 

  117. Aitken DR, Hinkle GH, Thurston MO, Tuttle SE, Martin DT, Olsen J, Haagensen Jr DE, Houchens D, Martin Jr EW. A gamma-detecting probe for radioimmune detection of CEA-producing tumors. Successful experimental use and clinical case report. Dis Colon Rectum. 1984;27(5):279–82.

    Article  CAS  PubMed  Google Scholar 

  118. Xu G, Zhang M, Liu B, Li Z, Lin B, Xu X, Jin M, Li J, Wu J, Dong Z. Radioimmunoguided surgery in gastric cancer using 131-I labeled monoclonal antibody 3H11. Semin Surg Oncol. 1994;10:88–94.

    Article  CAS  PubMed  Google Scholar 

  119. Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging. 2004;31(1):44–51.

    Article  PubMed  Google Scholar 

  120. Zervos EE, Desai DC, DePalatis LR, Soble D, Martin Jr EW. 18F-labeled fluorodeoxyglucose positron emission tomography-guided surgery for recurrent colorectal cancer: a feasibility study. J Surg Res. 2001;97(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  121. Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26(1):1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Laverman P, McBride WJ, Sharkey RM, Eek A, Joosten L, Oyen WJ, Goldenberg DM, Boerman OC. A novel facile method of labeling octreotide with (18)F-fluorine. J Nucl Med. 2010;51(3):454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gulec SA, Hoenie E, Hostetter R, Schwartzentruber D. PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol. 2007;5:65.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vos CG, Hartemink KJ, Muller S, Oosterhuis JW, Meijer S, van den Tol MP, Comans EF. Clinical applications of FDG-probe guided surgery. Acta Chir Belg. 2012;112(6):414–8.

    CAS  PubMed  Google Scholar 

  125. Kraeber-Bodere F, Cariou B, Curtet C, Bridji B, Rousseau C, Dravet F, Charbonnel B, Carnaille B, Le Neel JC, Mirallie E. Feasibility and benefit of fluorine 18-fluoro-2-deoxyglucose-guided surgery in the management of radioiodine-negative differentiated thyroid carcinoma metastases. Surgery. 2005;138(6):1176–82; discussion 1182.

    Article  PubMed  Google Scholar 

  126. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Notni J, Pohle K, Wester HJ. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res. 2012;2(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Clark WA, Izotova L, Philipova D, Wu W, Lin L, Pestka S. Site-specific 32P-labeling of cytokines, monoclonal antibodies, and other protein substrates for quantitative assays and therapeutic application. Bio Tech. 2002;Suppl:76–8, 80–77.

    Google Scholar 

  129. Randerath K, Randerath E. 32P-postlabeling methods for DNA adduct detection: overview and critical evaluation. Drug Metab Rev. 1994;26(1–2):67–85.

    Article  CAS  PubMed  Google Scholar 

  130. Chakravarty R, Pandey U, Manolkar RB, Dash A, Venkatesh M, Pillai MR. Development of an electrochemical 90 Sr-90 Y generator for separation of 90 Y suitable for targeted therapy. Nucl Med Biol. 2008;35(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  131. Minarik D, Sjogreen-Gleisner K, Linden O, Wingardh K, Tennvall J, Strand SE, Ljungberg M. 90Y Bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med. 2010;51(12):1974–8.

    Article  PubMed  Google Scholar 

  132. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65(3):318–27.

    Article  CAS  PubMed  Google Scholar 

  133. Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, Walrand S. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1696.

    Article  PubMed  Google Scholar 

  134. Moore GE, Peyton WT, et al. The clinical use of sodium fluorescein and radioactive diiodofluorescein in the localization of tumors of the central nervous system. Minn Med. 1948;31(10):1073–6.

    CAS  PubMed  Google Scholar 

  135. Cundiff JD, Wang YZ, Espenan G, Maloney T, Camp A, Lazarus L, Stolier A, Brooks R, Torrance B, Stafford S, O’Leary JP, Woltering EA. A phase I/II trial of 125I methylene blue for one-stage sentinel lymph node biopsy. Ann Surg. 2007;245(2):290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  136. van der Poel HG, Buckle T, Brouwer OR, Valdes Olmos RA, van Leeuwen FWB. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011;60:826–33.

    Article  PubMed  Google Scholar 

  137. Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, Sbarbati A, Boschi F. First human Cerenkography. J Biomed Opt. 2013;18(2):20502.

    Article  PubMed  CAS  Google Scholar 

  138. Chin PTK, Beekman CAC, Buckle T, Josephson L, van Leeuwen FWB. Multispectral visualization of surgical safety-margins using fluorescent marker seeds. Am J Nucl Med Mol Imaging. 2012;2(2):151–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hu H, Cao X, Kang F, Wang M, Lin Y, Liu M, Li S, Yao L, Liang J, Liang J, Nie Y, Chen X, Wang J, Wu K. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25(6):1814–22.

    Google Scholar 

  140. Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4605–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Blower PJ, Kettle AG, O’Doherty MJ, Collins RE, Coakley AJ. 123I-methylene blue: an unsatisfactory parathyroid imaging agent. Nucl Med Commun. 1992;13(7):522–7.

    Article  CAS  PubMed  Google Scholar 

  142. Link EM, Blower PJ, Costa DC, Lane DM, Lui D, Brown RS, Ell PJ, Spittle MF. Early detection of melanoma metastases with radioiodinated methylene blue. Eur J Nucl Med. 1998;25(9):1322–9.

    Article  CAS  PubMed  Google Scholar 

  143. Harkrider WW, Diebold AE, Maloney T, Espenan G, Wang YZ, Stafford SJ, Camp A, Frey D, Chappuis C, Woltering EA. An extended phase II trial of iodine-125 methylene blue for sentinel lymph node identification in women with breast cancer. J Am Coll Surg. 2013;216(4):599–605; discussion 605–596.

    Article  PubMed  Google Scholar 

  144. Chu M, Wan Y. Sentinel lymph node mapping using near-infrared fluorescent methylene blue. J Biosci Bioeng. 2009;107(4):455–9.

    Article  CAS  PubMed  Google Scholar 

  145. Brouwer OR, Buckle T, Vermeeren L, Klop WM, Balm AJ, van der Poel HG, van Rhijn BW, Horenblas S, Nieweg OE, van Leeuwen FW, Valdes Olmos RA. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53(7):1034–40.

    Article  CAS  PubMed  Google Scholar 

  146. Brouwer OR, van den Berg NS, Matheron HM, van der Poel HG, van Rhijn BW, Bex A, van Tinteren H, Valdes Olmos RA, van Leeuwen FW, Horenblas S. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65(3):600–9.

    Article  CAS  PubMed  Google Scholar 

  147. KleinJan GH, van den Berg NS, Brouwer OR, de Jong J, Acar C, Wit EM, Vegt E, van der Noort V, Valdes Olmos RA, van Leeuwen FW, van der Poel HG. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66(6):991–8.

    Article  PubMed  Google Scholar 

  148. van den Berg NS, Brouwer OR, Schaafsma BE, Matheron HM, Klop WM, Balm AJ, van Tinteren H, Nieweg OE, van Leeuwen FW, Valdes Olmos RA. Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the hybrid tracer indocyanine green-tc-nanocolloid. Radiology. 2015;275(2):521–9.

    Article  PubMed  Google Scholar 

  149. Thorek DL, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of (18)F-FDG. J Nucl Med. 2014;55(1):95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer. 2014;120(22):3433–45.

    Article  CAS  PubMed  Google Scholar 

  151. Maurer AH, Elsinga P, Fanti S, Nguyen B, Oyen WJ, Weber WA. Imaging the folate receptor on cancer cells with 99mTc-etarfolatide: properties, clinical use, and future potential of folate receptor imaging. J Nucl Med. 2014;55(5):701–4.

    Article  CAS  PubMed  Google Scholar 

  152. van de Watering FC, Rijpkema M, Perk L, Brinkmann U, Oyen WJ, Boerman OC. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int. 2014;2014:203601.

    PubMed  PubMed Central  Google Scholar 

  153. Azhdarinia A, Ghosh P, Ghosh S, Wilganowski N, Sevick-Muraca EM. Dual-labeling strategies for nuclear and fluorescence molecular imaging: a review and analysis. Mol Imaging Biol. 2012;14(3):261–76.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kuil J, Buckle T, van Leeuwen FWB. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev. 2012;41(15):5239–61.

    Article  CAS  PubMed  Google Scholar 

  155. Seibold U, Wangler B, Schirrmacher R, Wangler C. Bimodal imaging probes for combined PET and OI: recent developments and future directions for hybrid agent development. Biomed Res Int. 2014;2014:153741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Bunschoten A, Buckle T, Visser N, Kuil J, Yuan H, Josephson L, Vahrmeijer AL, van Leeuwen FWB. Multimodal interventional molecular imaging of tumor margins and distant metastases by targeting the αvβ3 integrin. Chembiochem. 2012;13(7):1039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thorp-Greenwood FL, Coogan MP. Multimodal radio- (PET/SPECT) and fluorescence imaging agents based on metallo-radioisotopes: current applications and prospects for development of new agents. Dalton Trans. 2011;40(23):6129–43.

    Article  CAS  PubMed  Google Scholar 

  158. Kuil J, Velders AH, van Leeuwen FWB. Multimodal tumor-targeting peptides functionalized with both a radio- and a fluorescent label. Bioconjug Chem. 2010;21(10):1709–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Netherlands Organisation for Scientific Research VIDI grant (NWO; STW BGT 11272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fijs W. B. van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bunschoten, A., van den Berg, N.S., Valdés Olmos, R.A., Blokland, J.A.K., van Leeuwen, F.W.B. (2016). Tracers Applied in Radioguided Surgery. In: Herrmann, K., Nieweg, O., Povoski, S. (eds) Radioguided Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-26051-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26051-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26049-5

  • Online ISBN: 978-3-319-26051-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics