Skip to main content

Digital Technology and Mathematics Education: Core Ideas and Key Dimensions of Michèle Artigue’s Theoretical Work on Digital Tools and Its Impact on Mathematics Education Research

  • Chapter
  • First Online:
The Didactics of Mathematics: Approaches and Issues

Abstract

In this chapter, we revisit Michèle Artigue’s classic 2002 IJCML article and draw out what we consider to be the core theoretical ideas and key dimensions of the body of work on tools and tool use that Michèle not only elaborated but also inspired others to further develop. We trace the evolutionary path of these core ideas, noting the ways in which they theorise the four general key dimensions of learner, teacher, tool, and mathematics. We focus on seven core theoretical ideas that have been central to Michèle’s work and that have impacted in various ways the research of others: the instrumental approach to tool use, instrumental genesis, the pragmatic-epistemic duality, the technical-conceptual connection, the paper-and-pencil versus digitally-instrumented-technique relationship, the institutional aspect, and the networking of theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Michèle would be the first to insist that the contributions we describe in this chapter were not hers alone, nor just those of her DIDIREM team in Paris, but were also based on collaboration that included a team in Rennes piloted by Jean-Baptiste Lagrange, and another in Montpellier piloted by Dominique Guin and Luc Trouche.

  2. 2.

    The TELMA cross-experimentation studies involved pairs of teams coming from different theoretical cultures, but both using the same digital technology—a technology that was well known to one of the teams but alien to the other.

  3. 3.

    The ReMath project relied on the TELMA meta-language of didactic functionalities and concerns, as well as the system of cross-experiments, but had somewhat different aims. It focused more specifically on representations and issues related to the design of digital artefacts and extended the TELMA methodology to include cross-case-study analyses. For further elaboration of the ways in which the ReMath project developed, modified, and extended the ideas initiated in the TELMA project, see the recently published Artigue and Mariotti (2014) paper, which appeared after this chapter was written.

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.

    Article  Google Scholar 

  • Artigue, M. (2007). Digital technologies: A window on theoretical issues in mathematics education. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the European Society for research in mathematics education (pp. 68–82). Larnaca, CY: CERME 5.

    Google Scholar 

  • Artigue, M. (2012). Mathematics education as a multicultural field of research and practice: Outcomes and challenges. In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), Mathematics Education: Expanding Horizons (2012 Proceedings of Conference of Mathematics Education Research Group of Australasia). Singapore: MERGA. Available at: http://www.merga.net.au/documents/Artigue_2012_MERGA_35.pdf

  • Artigue, M., & Bardini, C. (2010). New didactical phenomena prompted by TI-Nspire specificities—the mathematical component of the instrumentation process. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 1171–1180). Lyon, FR: INRP.

    Google Scholar 

  • Artigue, M., Bartolini Bussi, M., Dreyfus, T., Gray, E., & Prediger, S. (2005). Different theoretical perspectives and approaches in research in mathematics education. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1239–1243). Sant Feliu de Guixols, ES: CERME 4.

    Google Scholar 

  • Artigue, M., Bosch, M., & Gascón, J. (2011). Research praxeologies and networking theories. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 2381–2390). Rzeszów, PL: CERME 7.

    Google Scholar 

  • Artigue, M., Bosch, M., Gascón, J., & Lenfant, A. (2010). Research problems emerging from a teaching episode: A dialogue between TDS and ATD. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 1535–1544). Lyon, FR: INRP.

    Google Scholar 

  • Artigue, M., Cerulli, M., Haspekian, M., & Maracci, M. (2009). Connecting and integrating theoretical frames: The TELMA contribution. International Journal of Computers for Mathematical Learning, 14, 217–240.

    Article  Google Scholar 

  • Artigue, M., Defouad, B., Dupérier, M., Juge, G., & Lagrange, J.-B. (1998). Intégration de calculatrices complexes dans l’enseignement des mathématiques au lycée (research report, Cahier de Didirem no. 4). Paris: Université Paris 7.

    Google Scholar 

  • Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: the ReMath enterprise. Educational Studies in Mathematics, 85, 329–355.

    Article  Google Scholar 

  • Bikner-Ahsbahs, A., Dreyfus, T., Kidron, I., Arzarello, F., Radford, L., Artigue, M., & Sabena, C. (2010). Networking of theories in mathematics education. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of 34th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 145–175). Belo Horizonte, BR: PME.

    Google Scholar 

  • Bikner-Ahsbahs, A., & Prediger, S. (2006). Diversity of theories in mathematics education—How can we deal with it? ZDM The International Journal on Mathematics Education, 38(1), 52–57.

    Article  Google Scholar 

  • Boon, P., & Drijvers, P. (2005). Chaining operations to get insight in expressions and functions. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 969–978). Sant Feliu de Guixols, ES: CERME 4.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Didactique des mathématiques, 1970–1990 (edited and translated by N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield). Dordrecht, NL: Kluwer Academic Publishers.

    Google Scholar 

  • Bueno-Ravel, L., & Gueudet, G. (2007). Online resources in mathematics: Teachers’ genesis of use. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 1369–1378). Larnaca, CY: CERME 5.

    Google Scholar 

  • Cerulli, M., Pedemonte, B., & Robotti, E. (2005). An integrated perspective to approach technology in mathematics education. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1389–1399). Sant Feliu de Guixols, ES: CERME 4.

    Google Scholar 

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19, 221–266.

    Google Scholar 

  • Defouad, B. (2000). Étude de genèses instrumentales liées à l’utilisation d’une calculatrice symbolique en classe de première S. Thèse de doctorat, Université Paris 7.

    Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75, 213–234.

    Article  Google Scholar 

  • Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013a). One episode, two lenses: A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82, 23–49.

    Article  Google Scholar 

  • Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., & Boon, P. (2013b). Digital resources inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM, The International Journal on Mathematics Education, 45, 987–1001.

    Google Scholar 

  • Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 363–391). Reston, VA: National Council of Teachers of Mathematics; Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Godino, J. D., Batanero, C., Contreras, A., Estepa, A., Lacasta, E., & Wilhelmi, M. R. (2013). Didactic engineering as design-based research in mathematics education. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 2810–2819). Antalya, TU: CERME 8.

    Google Scholar 

  • Gueudet, G., Pepin, B., & Trouche, L. (Eds.). (2012). From text to ‘lived’ resources: Mathematics curriculum materials and teacher development. New York: Springer.

    Google Scholar 

  • Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71, 199–218.

    Article  Google Scholar 

  • Gueudet, G., & Trouche, L. (Eds.). (2010). Ressources vives: Le travail documentaire des professeurs en mathématiques. Rennes, FR: Presses universitaires de Rennes.

    Google Scholar 

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Guin, D., & Trouche, L. (Eds.). (2002). Calculatrices symboliques. Transformer un outil en un instrument du travail mathématique: un problem didactique. Grenoble, FR: La Pensée Sauvage.

    Google Scholar 

  • Haspekian, M. (2005). An “instrumental approach” to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10, 109–141.

    Article  Google Scholar 

  • Haspekian, M., & Artigue, M. (2007). L’intégration d’artefacts informatiques professionnels à l’enseignement dans une perspective instrumentale: le cas des tableurs. In M. Baron, D. Guin, & L. Trouche (Eds.), Environnements informatisés et ressources numériques pour l’apprentissage (pp. 37–63). Paris, FR: Hermès.

    Google Scholar 

  • Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment with tasks designed from a task-technique-theory perspective. International Journal of Computers for Mathematical Learning, 14, 121–152.

    Article  Google Scholar 

  • Hoyles, C., & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technology—Rethinking the terrain (17th ICMI study). New York: Springer.

    Google Scholar 

  • Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education (pp. 323–349). Dordrecht, NL: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: the case of social interactions. ZDM, The International Journal on Mathematics Education, 40, 247–264.

    Article  Google Scholar 

  • Kieran, C. (2013). The false dichotomy in mathematics education between conceptual understanding and procedural skills: An example from algebra. In K. Leatham (Ed.), Vital directions for mathematic education research (pp. 153–171). New York: Springer.

    Chapter  Google Scholar 

  • Kieran, C., Boileau, A., Saldanha, L., Hitt, F., Tanguay, D., & Guzmán, J. (2006). Le rôle des calculatrices symboliques dans l’émergence de la pensée algébrique: le cas des expressions équivalentes. Actes du colloque EMF 2006 (Espace Mathématique Francophone). Sherbrooke, QC: EMF.

    Google Scholar 

  • Kieran, C., Boileau, A., Tanguay, D., & Drijvers, P. (2013). Design researchers’ documentational genesis in a study on equivalence of algebraic expressions. ZDM, The International Journal on Mathematics Education, 45, 1045–1056.

    Google Scholar 

  • Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11, 205–263.

    Article  Google Scholar 

  • Lagrange, J.-B. (1999). Techniques and concepts in pre-calculus using CAS: A two-year classroom experiment with the TI-92. International Journal for Computer Algebra in Mathematics Education, 6(2), 143–165.

    Google Scholar 

  • Lagrange, J.-B. (2000). L’intégration d’instruments informatiques dans l’enseignment: Une approche par les techniques. Educational Studies in Mathématiques, 43, 1–30.

    Article  Google Scholar 

  • Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional overview of recent research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education (pp. 237–269). Dordrecht, NL: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Lagrange, J.-B., & Psycharis, G. (2013). Exploring the potential of computer environments for the teaching and learning of functions: A double analysis from two traditions of research. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 2624–2633). Antalya, TU: CERME 8.

    Google Scholar 

  • Martínez, C. (2013). El desarrollo del conocimiento algebraico de estudiantes en un ambiente CAS con tareas diseñadas desde un enfoque técnico-téorico: un studio sobre la simplificación de expresiones racionales. Doctoral thesis. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City.

    Google Scholar 

  • Monaghan, J. (2010). People and theories. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 16–23). Lyon, FR: INRP.

    Google Scholar 

  • Monaghan, J. (2011). Theoretical genesis of an informal meta-theory to develop a way of talking about mathematics and science education and to connect European and North American literature. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 2493–2502). Rzeszów, PL: CERME 7.

    Google Scholar 

  • Nicaud, J.-F., Bouhineau, D., & Chaachoua, H. (2004). Mixing microworld and CAS features in building computer systems that help students learn algebra. International Journal of Computers for Mathematical Learning, 9, 169–211.

    Article  Google Scholar 

  • Prediger, S., Arzarello, F., Bosch, M., Lenfant, A., & (Eds.), (2008). Comparing, combining, coordinating—networking strategies for connecting theoretical approaches. ZDM, The International Journal on Mathematics Education, 40, 163–340.

    Article  Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains. Paris, FR: Armand Colin.

    Google Scholar 

  • ReMath Deliverable 1. (2006). Integrative theoretical framework, Version A. (Representing mathematics with digital media project). Available at: http://telearn.archives-ouvertes.fr/docs/00/19/04/17/PDF/ReMath_DEL1_WP1vF-1.pdf

  • Sabra, H. (2011). Contribution à l’étude du travail documentaire des enseignants de mathématiques: les incidents comme révélateurs des rapports entre documentations individuelle et communautaire. Thèse de doctorat: Université Claude Bernard Lyon 1.

    Google Scholar 

  • Trouche, L. (1997). À propos de l’apprentissage des limites de fonctions dans un environnement calculatrice, étude des rapports entre processus de conceptualisation et processus d’instrumentation. Thèse de doctorat: Université Montpellier II.

    Google Scholar 

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10, 77–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Kieran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kieran, C., Drijvers, P. (2016). Digital Technology and Mathematics Education: Core Ideas and Key Dimensions of Michèle Artigue’s Theoretical Work on Digital Tools and Its Impact on Mathematics Education Research. In: Hodgson, B., Kuzniak, A., Lagrange, JB. (eds) The Didactics of Mathematics: Approaches and Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-26047-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26047-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26046-4

  • Online ISBN: 978-3-319-26047-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics