Skip to main content

Erythrocytes By-Products of l-Arginine Catabolism

  • Chapter
  • First Online:
L-Arginine in Clinical Nutrition

Abstract

l-Arginine is not only used as a precursor for protein synthesis, but it also functions as building stone for the synthesis of nitric oxide (NO), urea, ornithine, citrulline, creatinine, agmatine, glutamate, proline, and polyamines (Wu and Morris. Biochem J 336(Pt 1):1–17, 1998). Arginine is relatively abundant in the blood in its “free” form, and its blood concentration is mainly affected by food intake, by protein turnover, as well as by arginine supply via the kidney (Wu and Morris. Biochem J 336(Pt 1):1–17, 1998). This dibasic amino acid is conditionally essential during growth and is included in many pharmacological and nutritional formulations (Saitoh et al. J Toxicol Sci 39:41–50, 2014). In the urea cycle, arginine is derived from arginosuccinate and is further metabolized to produce urea and the amino acid ornithine (Wu and Morris. Biochem J 336(Pt 1):1–17, 1998). De novo biosynthesis of arginine uses citrulline as a precursor which, in turn, can be supplied from intestinal glutamine metabolism (Saitoh et al. J Toxicol Sci 39:41–50, 2014). Besides dietary intake, several factors affect the bioavailability of dietary arginine, such as the levels of lysine, manganese, n-3 fatty acids in the diet, and circulating hormones including cortisol, growth hormone, leptin, cytokines, endotoxins, as well as other biomolecules, such as creatine, lactate, ornithine, and methylarginine (Wu et al. Amino Acids 37:153–168, 2009). Here, citrulline is converted to arginine in the body, and pharmacokinetic studies indicate that citrulline is better absorbed and, hence, has a greater systemic bioavailability than arginine (Cynober. J Nutr, 6th Amino acid assessment workshop 1646S–1649S, 2007). Dietary citrulline is also capable of increasing blood levels of arginine and NO without affecting urea output (Virarkar et al. Crit Rev Food Sci Nutr 53(11):1157–1167, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu G, Morris Jr SM. l-Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Google Scholar 

  2. Saitoh W, Yamauchi S, Watanabe K, Takasaki W, Mori K. Metabolomic analysis of l-arginine metabolism in acute hepatic injury in rats. J Toxicol Sci. 2014;39:41–50.

    Google Scholar 

  3. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. l-Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37:153–68.

    Google Scholar 

  4. Cynober L. Pharmacokinetics of l-arginine and related amino acids. J Nutr, 6th Amino acid assessment workshop. 2007. p. 1646S–9S.

    Google Scholar 

  5. Virarkar M, Alappat L, Bradford PG, Awad AB. l-Arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci Nutr. 2013;53(11):1157–67.

    Google Scholar 

  6. Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR. Dietary l-arginine uptake by the splanchnic region in adult humans. Am J Physiol Endocrinol Metab. 1993;265:E532–9.

    Google Scholar 

  7. Krause MS, McClenaghan NH, Flatt PR, de Bittencourt PI, Murphy C, Newsholme P. l-arginine is essential for pancreatic β-cell functional integrity, metabolism and defense from inflammatory challenge. J Endocrinol. 2011;211(1):87–97.

    Google Scholar 

  8. Fotiadis D, Yoshikatsu K, Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med. 2013;34(2-3):139–58.

    Article  CAS  PubMed  Google Scholar 

  9. Da Silva MFL, Floeter-Winter LM. Arginase in Leishmania. In: Santos ALS, Branquinha MH, D’Avila-Levy CM, Kneipp LF, Sodré CL, editors. Proteins and proteomics of Leishmania and Trypanosoma: subcellular biochemistry, vol. 74. Dordrecht: Springer; 2014. p. 103–17.

    Chapter  Google Scholar 

  10. Kavanaugh MP. Voltage dependence of facilitated l-arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry. 1993;32(22):5781–5.

    Google Scholar 

  11. Closs EI, Boissel JP, Habermeier A, Rotmann A. Structure and function of cationic amino acid transporters (CATs). J Membr Biol. 2006;213(2):67–77.

    Article  CAS  PubMed  Google Scholar 

  12. Rothenberg ME, Doepker MP, Lewkowich IP, Chiaramonte MG, Stringer KF, Finkelman FD, MacLeod CL, Ellies LG, Zimmermann N. Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung. Proc Natl Acad Sci U S A. 2006;103(40):14895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacin M, Modolell M, Lloberas J, Celada A. Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J Immunol. 2006;176(10):5918–24.

    Article  CAS  PubMed  Google Scholar 

  14. Hrabak A, Bajor T, Temesi A, et al. The inhibitory effect of nitrite, a stable product of nitric oxide (NO) formation, on arginase. FEBS Lett. 1996;390(2):203–6.

    Article  CAS  PubMed  Google Scholar 

  15. Felig P, Wahren J, Räf L. Evidence of inter-organ amino-acid transport by blood cells in humans. Proc Natl Acad Sci U S A. 1973;70(6):1775–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winter CG, Christensen HN. Migration of amino acids across the membrane of the human erythrocyte. J Biol Chem. 1964;239:872–8.

    CAS  PubMed  Google Scholar 

  17. Drewes LR, Conway WP, Gilboe DD. Net amino acid transport between plasma and erythrocytes and perfused dog brain. Am J Physiol Endocrinol Metab. 1977;233:E320.

    CAS  Google Scholar 

  18. Young JD, Jones SEM, Ellory JC. Amino acid transport in human and in sheep erythrocytes. Proc R Soc Lond B. 1980;209:355–75.

    Article  CAS  PubMed  Google Scholar 

  19. Harvey C, Ellory JC. Identification of amino acid transporters in the red blood cell. In: Fleischer S, Fleischer B, editors. Methods in enzymology. New York: Academic; 1989. p. 122–60.

    Google Scholar 

  20. Vadgama JV, Castro M, Christensen HN. Characterization of amino acid transport during erythroid cell differentiation. J Biol Chem. 1987;262(27):13273–84.

    CAS  PubMed  Google Scholar 

  21. Ramírez-Zamora S, Méndez-Rodríguez ML, Olguín-Martínez M, Sánchez-Sevilla L, Quintana-Quintana M, García-García N, Hernández-Muñoz R. Increased erythrocytes by-products of l-arginine catabolism are associated with hyperglycemia and could be Involved in the pathogenesis of type 2 diabetes mellitus. PLoS One. 2013;8(6):e66823.

    Google Scholar 

  22. Moore WT, Rodarte J, Smith Jr LH. Urea synthesis by hemic cells. Clin Chem. 1964;10(2):1059–65.

    CAS  PubMed  Google Scholar 

  23. Hagenfeldt L, Arvidsson A. The distribution of amino acids between plasma and erythrocytes. Clin Chim Acta. 1980;100:133–41.

    Article  CAS  PubMed  Google Scholar 

  24. Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol. 2014;2:251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen LY, Mehta JL. Variable effects of l-arginine analogs on l-arginine-nitric oxide pathway in human neutrophils and platelets may relate to different nitric oxide synthase isoforms. J Pharmacol Exp Ther. 1996;276:253–7.

    Google Scholar 

  26. Mehta JL, Mehta P, Li D. Nitric oxide synthase in adult red blood cells: vestige of an earlier age or a biologically active enzyme? J Lab Clin Med. 2000;135(6):430–1.

    Article  CAS  PubMed  Google Scholar 

  27. Muller G, Goettsch C, Morawietz H. Oxidative stress and endothelial dysfunction. Hamostaseologie. 2007;27(1):5–12.

    CAS  PubMed  Google Scholar 

  28. Chen LY, Mehta JL. Evidence for the presence of l-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol. 1998;32(1):57–61.

    Google Scholar 

  29. Kang ES, Ford K, Grokulsky G, Wang YB, Chiang TM, Acchiardo SR. Normal circulating adult human red blood cells contain inactive NOS proteins. J Lab Clin Med. 2000;135(6):444–51.

    Article  CAS  PubMed  Google Scholar 

  30. Kleinbongard P, Keymel S, Kelm M. New functional aspects of the l-arginine-nitric oxide metabolism within the circulating blood. Thromb Haemost. 2007;98(5):970–4.

    Google Scholar 

  31. Gladwin MT, Crawford JH, Patel RP. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Serial review: biomedical implications for hemoglobin interactions with nitric oxide. Free Radic Biol Med. 2004;36(6):707–17.

    Article  CAS  PubMed  Google Scholar 

  32. Cylwik D, Mogielnicki A, Buczko W. l-arginine and cardiovascular system. Pharmacol Rep. 2005;57:14–22.

    Google Scholar 

  33. Kosaka H, Hisatome I, Ogino K, Tanaka Y, Osaki S, Kitamura H, et al. Excess purine degradation in muscle of chronic hemodialysis patients. Nephron. 1993;64:481–2.

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka Y, Hisatome I, Kinugaqa T, Tanaka H, Tomikura Y, Ando F, et al. Excessive purine degradation during semi-ischemic forearm test in patients with diabetes mellitus. Intern Med. 2003;42:788–92.

    Article  CAS  PubMed  Google Scholar 

  35. Rexroth W, Hageloch W, Isgro F, Koeth T, Manzl G, Weicker H. Influence of peripheral arterial occlusive disease on muscular metabolism. Part 1: changes in lactate, ammonia and hypoxanthine concentration in femoral blood. Klin Wochenschr. 1989;67:576–82.

    Article  CAS  PubMed  Google Scholar 

  36. Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, Hendrick CC. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004;47:1727–34.

    Article  CAS  PubMed  Google Scholar 

  37. Hartnett ME, Stratton RD, Browne RW, Rosner BA, Lanham RJ, Armstrong D. Serum markers of oxidative stress and severity of diabetic retinopathy. Diabetes Care. 2000;23:234240.

    Article  Google Scholar 

  38. Salceda R, Vilchis C, Coffe V, Hernández-Muñoz R. Changes in the redox state in the retina and brain during the onset of diabetes in rats. Neurochem Res. 1998;23:893–7.

    Article  CAS  PubMed  Google Scholar 

  39. Memisoğullari R, Taysi S, Bakan E, Capoglu I. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem Funct. 2003;21:291–6.

    Article  PubMed  Google Scholar 

  40. Misbin RI, Green L, Stadel BV, Gueriguian JL, Gubbi A, Fleming GA. Lactic acidosis in patients with diabetes treated with metformin. N Engl J Med. 1998;338:265–6.

    Article  CAS  PubMed  Google Scholar 

  41. Fulop M, Murthy V, Michilli A, Nalamati J, Qian Q, Saitowitz A. Serum β-hydroxybutyrate measurement in patients with uncontrolled diabetes mellitus. Arch Intern Med. 1999;159:381–4.

    Article  CAS  PubMed  Google Scholar 

  42. Obrosova IG, Drel VR, Kumagai AK, Szábo C, Pacher P, Stevens MJ. Early diabetes-induced biochemical changes in the retina: comparison of rat and mouse models. Diabetologia. 2006;49:2525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheung AK, Fung MK, Lo AC, Lam TT, So KF, Chung SS, Chung SK. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes. 2005;54:3119–25.

    Article  CAS  PubMed  Google Scholar 

  44. Cruz JW, Oliveira MA, Hohman TC, Fortes ZB. Influence of tolrestat on the defective leukocyte-endothelial interaction in experimental diabetes. Eur J Pharmacol. 2000;391:163–74.

    Article  CAS  PubMed  Google Scholar 

  45. Miwa K, Nakamura J, Hamada Y, Naruse K, Nakashima E, Kato K, et al. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract. 2003;60:1–9.

    Article  CAS  PubMed  Google Scholar 

  46. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53:2404–11.

    Article  CAS  PubMed  Google Scholar 

  47. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–11.

    Article  CAS  PubMed  Google Scholar 

  48. Wu G, Meininger CJ. l-Arginine nutrition and cardiovascular function. J Nutr. 2000;130:2626–9.

    CAS  PubMed  Google Scholar 

  49. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pernow J, Jung C. Arginase as a potential target in the treatment of cardiovascular disease: reversal of l-arginine steal? Cardiovasc Res. 2013;98(3):334–43.

    Google Scholar 

  51. Casanello P, Escudero C, Sobrevia L. Equilibrative nucleoside (ENTs) and cationic amino acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy diseases. Curr Vasc Pharmacol. 2007;5(1):69–84.

    Article  CAS  PubMed  Google Scholar 

  52. Phillips MM, Sheaff MT, Szlosarek PW. Targeting l-arginine-dependent cancers with l-arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat. 2013;45(4):251–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Hernández-Muñoz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Contreras-Zentella, M.L., Hernández-Muñoz, R. (2017). Erythrocytes By-Products of l-Arginine Catabolism. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics