Skip to main content

l-Arginine and TNFα Production in Macrophages: A Focus on Metabolism, Aging, Metabolic Syndrome, and Type 2 Diabetes

  • Chapter
  • First Online:
L-Arginine in Clinical Nutrition

Abstract

Arginine (Arg) has long been known to be a major regulator of immunity via its metabolic and physiological functions. In the 1950s, it was classified as a non-essential amino acid by Rose since Arg could be synthesized at the whole body level, mainly in the kidneys, after the conversion of intestinal citrulline (Cit) via argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). But things changed when Barbul et al. (Surg Forum 28:101–103, 1977) observed, surprisingly, that Arg was an immunomodulator via a thymic effect. At the same time, they observed that Arg could be essential in several situations, like growth or sepsis. Finally in the 1990s, Albina et al. (J Immunol 147:144–148, 1991) demonstrated that macrophages were able to produce nitric oxide (NO). These pioneering observations opened a new field of research focused on the regulation of macrophage functions by Arg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose WC, Haines WJ, Warner DT. The amino acid requirements of man. V. The rôle of lysine, l-arginine, and tryptophan. J Biol Chem. 1954;206(1):421–30.

    Google Scholar 

  2. Barbul A, Rettura G, Levenson SM, Seifter E. l-Arginine: a thymotropic and wound-healing promoting agent. Surg Forum. 1977;28:101–3.

    Google Scholar 

  3. Albina JE, Abate JA, Henry WL. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J Immunol. 1991;147:144–8.

    Google Scholar 

  4. West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 2006;22:409–37.

    Article  CAS  PubMed  Google Scholar 

  5. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell. 2000;103:1071–83.

    Google Scholar 

  6. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20:87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Bénazeth S, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy C, Newsholme P. Importance of glutamine metabolism in murine macrophages and human monocytes to l-arginine biosynthesis and rates of nitrite or urea production. Clin Sci. 1998;95:397–407.

    Google Scholar 

  9. Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and l-arginine recycling. J Nutr. 2007;137:1616S–20.

    Google Scholar 

  10. Hammermann R, Dreissig MD, Mössner J, Fuhrmann M, Berrino L, Göthert M, et al. Nuclear factor-kappa B mediates simultaneous induction of inducible nitric-oxide synthase and up-regulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages. Mol Pharmacol. 2000;58:1294–302.

    Google Scholar 

  11. Liu SF, Barnes PJ, Evans TW. Time course and cellular localization of lipopolysaccharide-induced inducible nitric oxide synthase messenger RNA expression in the rat in vivo. Crit Care Med. 1997;25:512–8.

    Google Scholar 

  12. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997;94:6954–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bronte V, Zanovello P. Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol. 2005;5:641–54.

    Google Scholar 

  14. Matata BM, Galiñanes M. Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem. 2002;277:2330–5.

    Google Scholar 

  15. Albina JE, Mills CD, Henry WL, Caldwell MD. Temporal expression of different pathways of l-arginine metabolism in healing wounds. J Immunol. 1990;144:3877–80.

    Google Scholar 

  16. Hecker M, Nematollahi H, Hey C, Busse R, Racké K. Inhibition of arginase by NG-hydroxy-l-arginine in alveolar macrophages: implications for the utilization of l-arginine for nitric oxide synthesis. FEBS Lett. 1995;359:251–4.

    Google Scholar 

  17. Moinard C, Cynober L, de Bandt J-P. Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005;24:184–97.

    Article  CAS  PubMed  Google Scholar 

  18. Morris SM, Kepka-Lenhart D, Chen LC. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol. 1998;275:E740–7.

    PubMed  Google Scholar 

  19. Galea E, Regunathan S, Eliopoulos V, Feinstein DL, Reis DJ. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of l-arginine. Biochem J. 1996;316:247–9.

    Google Scholar 

  20. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994;263:966–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sastre M, Galea E, Feinstein D, Reis DJ, Regunathan S. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J. 1998;330:1405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cynober L, Moinard C, De Bandt J-P. The 2009 ESPEN Sir David Cuthbertson. Citrulline: a new major signaling molecule or just another player in the pharmaconutrition game? Clin Nutr. 2010;29:545–51.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26:192–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG. Shifts in macrophage phenotypes and macrophage competition for l-arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet. 2009;18:482–96.

    Google Scholar 

  26. Norris KA, Schrimpf JE, Flynn JL, Morris Jr SM. Enhancement of macrophage microbicidal activity: supplemental l-arginine and citrulline augment nitric oxide production in murine peritoneal macrophages and promote intracellular killing of Trypanosoma cruzi. Infect Immun. 1995;63:2793–6.

    Google Scholar 

  27. Saito H, Trocki O, Wang SL, Gonce SJ, Joffe SN, Alexander JW. Metabolic and immune effects of dietary l-arginine supplementation after burn. Arch Surg. 1987;122:784–9.

    Google Scholar 

  28. Madden HP, Breslin RJ, Wasserkrug HL, Efron G, Barbul A. Stimulation of T cell immunity by l-arginine enhances survival in peritonitis. J Surg Res. 1988;44:658–63.

    Google Scholar 

  29. Mendez C, Jurkovich GJ, Wener MH, Garcia I, Mays M, Maier RV. Effects of supplemental dietary l-arginine, canola oil, and trace elements on cellular immune function in critically injured patients. Shock. 1996;6:7–12.

    Google Scholar 

  30. Mieulet V, Yan L, Choisy C, Sully K, Procter J, Kouroumalis A, et al. TPL-2-mediated activation of MAPK downstream of TLR4 signaling is coupled to l-arginine availability. Sci Signal. 2010;3:ra61.

    Google Scholar 

  31. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lloberas J, Celada A. Effect of aging on macrophage function. Exp Gerontol. 2002;37:1325–31.

    Article  CAS  PubMed  Google Scholar 

  33. Sebastián C, Espia M, Serra M, Celada A, Lloberas J. MacrophAging: a cellular and molecular review. Immunobiology. 2005;210:121–6.

    Article  PubMed  Google Scholar 

  34. Linehan E, Dombrowski Y, Snoddy R, Fallon PG, Kissenpfennig A, Fitzgerald DC. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell. 2014;13:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hilmer SN, Cogger VC, Le Couteur DG. Basal activity of Kupffer cells increases with old age. J Gerontol A Biol Sci Med Sci. 2007;62:973–8.

    Article  PubMed  Google Scholar 

  36. Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A, et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J Immunol. 2011;187:6208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohut ML, Senchina DS, Madden KS, Martin AE, Felten DL, Moynihan JA. Age effects on macrophage function vary by tissue site, nature of stimulant, and exercise behavior. Exp Gerontol. 2004;39:1347–60.

    Article  CAS  PubMed  Google Scholar 

  38. Cecílio CA, Costa EH, Simioni PU, Gabriel DL, Tamashiro WMSC. Aging alters the production of iNOS, arginase and cytokines in murine macrophages. Braz J Med Biol Res. 2011;44:671–81.

    PubMed  Google Scholar 

  39. Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30:806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Duin D, Mohanty S, Thomas V, Ginter S, Montgomery RR, Fikrig E, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007;178:970–5.

    Article  PubMed  Google Scholar 

  41. Hearps AC, Martin GE, Angelovich TA, Cheng W-J, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11:867–75.

    Article  CAS  PubMed  Google Scholar 

  42. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol. 2002;169:4697–701.

    Article  CAS  PubMed  Google Scholar 

  43. Boehmer ED, Goral J, Faunce DE, Kovacs EJ. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol. 2004;75:342–9.

    Article  CAS  PubMed  Google Scholar 

  44. Agrawal A, Agrawal S, Cao J-N, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178:6912–22.

    Article  CAS  PubMed  Google Scholar 

  45. Enioutina EY, Bareyan D, Daynes RA. A role for immature myeloid cells in immune senescence. J Immunol. 2011;186:697–707.

    Article  CAS  PubMed  Google Scholar 

  46. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S4–9.

    Article  PubMed  Google Scholar 

  47. Chen LC, Pace JL, Russell SW, Morrison DC. Altered regulation of inducible nitric oxide synthase expression in macrophages from senescent mice. Infect Immun. 1996;64:4288–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Müller I, Hailu A, Choi B-S, Abebe T, Fuentes JM, Munder M, et al. Age-related alteration of arginase activity impacts on severity of leishmaniasis. PLoS Negl Trop Dis. 2008;2:e235.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nieves C, Langkamp-Henken B. l-Arginine and immunity: a unique perspective. Biomed Pharmacother. 2002;56:471–82.

    Google Scholar 

  50. Jourdan M, Deutz NEP, Cynober L, Aussel C. Features, causes and consequences of splanchnic sequestration of amino acid in old rats. PLoS One. 2011;6:e27002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Breuillard C, Curis E, Le Plenier S, Cynober L, Moinard C. [Effects of citrulline on aged rats’ macrophages functionnality: in vivo and in vitro study. Nutr Clin Métab. 2014;28 Suppl 1:S221.

    Google Scholar 

  52. Carton JA, Maradona JA, Nuño FJ, Fernandez-Alvarez R, Pérez-Gonzalez F, Asensi V. Diabetes mellitus and bacteraemia: a comparative study between diabetic and non-diabetic patients. Eur J Med. 1992;1:281–7.

    CAS  PubMed  Google Scholar 

  53. Lefèvre L, Galès A, Olagnier D, Bernad J, Perez L, Burcelin R, et al. PPARγ ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination. PLoS One. 2010;5:e12828.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Breuillard C, Belabed L, Bonhomme S, Blanc-Quintin M-C, Neveux N, Couderc R, et al. l-Arginine availability modulates l-arginine metabolism and TNFα production in peritoneal macrophages from Zucker diabetic fatty rats. Clin Nutr. 2012;31:415–21.

    Google Scholar 

  55. Sherry CL, O’Connor JC, Kramer JM, Freund GG. Augmented lipopolysaccharide-induced TNF-alpha production by peritoneal macrophages in type 2 diabetic mice is dependent on elevated glucose and requires p38 MAPK. J Immunol. 2007;178:663–70.

    Article  CAS  PubMed  Google Scholar 

  56. Belabed L, Senon G, Blanc M-C, Paillard A, Cynober L, Darquy S. The equivocal metabolic response to endotoxaemia in type 2 diabetic and obese ZDF rats. Diabetologia. 2006;49:1349–59.

    Article  CAS  PubMed  Google Scholar 

  57. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12:57–65.

    CAS  PubMed  Google Scholar 

  58. Blanc M-C, Moinard C, Béziel A, Darquy S, Cynober L, De Bandt J-P. l-Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat. J Cell Physiol. 2005;202:153–9.

    Google Scholar 

  59. Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes. 2000;49:1451–8.

    Google Scholar 

  60. Breuillard C, Bonhomme S, Couderc R, Cynober L, De Bandt J-P. In vitro anti-inflammatory effects of citrulline on peritoneal macrophages in Zucker diabetic fatty rats. Br J Nutr. 2014;13:1–5.

    Google Scholar 

  61. Bonhomme S, Belabed L, Blanc M-C, Neveux N, Cynober L, Darquy S. l-Arginine-supplemented enteral nutrition in critically ill diabetic and obese rats: a dose-ranging study evaluating nutritional status and macrophage function. Nutrition. 2013;29:305–12.

    Google Scholar 

  62. Breuillard C, Darquy S, Curis E, Neveux N, Garnier J-P, Cynober L, et al. Effects of a diabetes-specific enteral nutrition on nutritional and immune status of diabetic, obese, and endotoxemic rats: interest of a graded l-arginine supply. Crit Care Med. 2012;40:2423–30.

    Google Scholar 

  63. Moinard C, Barbar S, Choisy C, Butel M-J, Francis Bureau M, Hasselmann M, et al. l-Arginine reduces bacterial invasion in rats with head injury: an in vivo evaluation by bioluminescence. Crit Care Med. 2012;40:278–80.

    Google Scholar 

  64. Pedersen BK, Febbraio MA. Point: interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J Appl Physiol. 2007;102:814–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Breuillard PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Breuillard, C., Moinard, C., Farges, MC. (2017). l-Arginine and TNFα Production in Macrophages: A Focus on Metabolism, Aging, Metabolic Syndrome, and Type 2 Diabetes. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics