Skip to main content

Processing Techniques for Polyolefins

  • Chapter
  • First Online:
Polyolefin Compounds and Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 2174 Accesses

Abstract

Without any doubts it could be stated that among the other types of polymeric materials only polyolefins are processed into such amount of products: blown packaging and agriculture films; extruded hygienic foils, building and car industry sheets and foams, pressure pipes, wires and cables insulation; blown moulded containers, tanks, detergent bottles or car defrost air systems; injection moulded consumer (end use) products; melt blown non-woven fabrics; coated and laminated paper or its substitution. Easiness of polyolefins processing connected with relative high melt stability and low processing temperature, possibility to modify properties of final products via molecular tailoring—copolymerization, alloying, grafting, crosslinking and high recycling potential guarantee further successful future for polyolefins for a wide range of applications. Deeper discussion of selected individual continuous processes and processing aspects is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Ehrenstein, Polymeric Materials: Structure-Properties-Applications (Carl Hanser Verlag, Munich, 2001)

    Book  Google Scholar 

  2. http://www.psgdover.com/en/maag/automatik-pelletizing-systems/sphero-underwater-pelletizing-system/sphero-220350560

  3. http://www.coperion.com/en/compounding-extrusion/machines-systems/pelletizers/ug-underwater-pelletizer

  4. http://www.lyondellbasell.com/Products/ByCategory/polymers/type/Polyethylene/PolyolefinPowders

  5. US 20120172534 A1, Powdered thermoplastic polyolefin elastomer composition for slush molding processes

    Google Scholar 

  6. WO 2005123822 A1, Process for the production of stabilised filled polyolefins

    Google Scholar 

  7. T.A. Osswald, G. Menges, Materials Science of Polymers for Engineers (Carl Hanser Verlag, Munich, 2003)

    Google Scholar 

  8. http://www.ptonline.com/articles/no-5—twin-screw-extrusion

  9. http://www.kraussmaffeiberstorff.com/media/files/kmdownloadlocal/en/EXT_BR_Conical_Profile_en.pdf

  10. http://www.milacron.com/plastics/sites/default/files/product-files/Extrusion Brochure_FINAL.pdf

  11. http://entex.de/fileadmin/user_upload/pwe._engl..pdf

  12. http://www.takimsan.com/en/planetary-extruder.html

  13. http://www.busscorp.com/en/quantec2.htm

  14. US 3749375 A, Process for mixing, kneading and granulating thermosetting plastic material in continuous operation

    Google Scholar 

  15. WO 2012113086 A1,Mixing and kneading machine for continuous conditioning processes and method for conditioning metals

    Google Scholar 

  16. http://www.coperion.com/en/compounding-extrusion/machines-systems/pelletizers/strand-pelletizer

  17. http://www.imeco.org/industry-solutions/chemicals/plastic-granules

  18. R.F. Dray, How to compare barrier screws. Plast. Technol. (2002)

    Google Scholar 

  19. J. A. Colbert, Scale up of Extruders, Practicalities and Pitfalls. Screws For Polymer Processing II, A One-Day Seminar (Rapra Technology Limited, Shawbury, 1998)

    Google Scholar 

  20. S.T. Lee, C.B. Park, Foam Extrusion: Principles and Practise, 2nd edn. (CRC Press, Taylor and Francis Group, 2014)

    Book  Google Scholar 

  21. R. Knittel, Get rid of wrinkles in blown film. Plast. Technol. (2007)

    Google Scholar 

  22. P. Waller, A Practical guide to Blown Film Troubleshooting (Plastics Touchpoint Group Inc., Ontario, 2012)

    Google Scholar 

  23. M.K. Atesmen, Everyday heat transfer problems: sensitivities to governing variables (2009)

    Google Scholar 

  24. J. Frankland, How fillers impact extrusion processing. Plast. Technol. (2011)

    Google Scholar 

  25. J. Aho, Rheological characterization of polymer melts in shear and extension: measurement reliability and data for practical processing. Ph.D. thesis, Tampere University of Technology, Finland, 2011

    Google Scholar 

  26. http://www.compuplast.com/

  27. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Specialized+Products/ANSYS+Polyflow

  28. http://www.autodesk.com/products/simulation-moldflow/overview

  29. http://www.scconsultants.com/en/ludovic-twin-screw-simulation-software.html

  30. R. Gendron, L.L. Daigneault, M. Dumoulin, J. Dufour, On-line rheology control for the peroxide degradation of polypropylene. Int. Plast. Eng. Technol. 2, 55–75 (1996)

    Google Scholar 

  31. http://www.dynisco.com/online-rheometer-viscosensor

  32. http://www.gneuss.de/index.php?lang=en&m=2&processing=online-viskosimeter

  33. http://www.hydramotion.com

  34. E. Riande, R. Diaz-Calleja, M.G. Prolongo, R.M. Masegosa, C. Salom, Polymer Viscoelasticity: Stress and Strain in Practise (Marcel Dekker, Basel, 2000)

    Google Scholar 

  35. J.M. Dealy, R.G. Larson, Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again (Carl Hanser Verlag, Munich, 2006)

    Book  Google Scholar 

  36. T. Sedlacek, T.M. Zatloukal, M.P. Filip, P.A. Boldizar, P. Saha, On the effect of pressure on the shear and elongational viscosities of polymer melts. Polym. Eng. Sci. 44, 1328–1337 (2004)

    Article  CAS  Google Scholar 

  37. H. Munstedt, New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J. Rheol. 23, 421–436 (1979)

    Article  Google Scholar 

  38. J. Meissner, J. Hostettler, A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol. Acta 33, 1–21 (1994)

    Article  CAS  Google Scholar 

  39. C.W. Macosko, J.M. Lorntson, The rheology of two blow molding polyethylenes. SPE Tech. Pap. 19(197), 461–467

    Google Scholar 

  40. S.Z. Gebrehiwot, Manufacturing and rheological analysis of spiral flow test piece. Degree Thesis, ARCADA, 2014

    Google Scholar 

  41. Plastics—the Facts 2013, An analysis of european plastics production, demand and waste data for 2012, Plastics Europe—Association of Plastics Manufactures (2013)

    Google Scholar 

  42. ASTM D883-12, Standard terminology relating to plastics

    Google Scholar 

  43. J.R. Wagner, E.M. Mount III, H.F. Giles Jr., Extrusion (Second Edition): The Definitive Processing Guide and Handbook (Plastics Design Library, William Andrew, Elsevier, 2014)

    Google Scholar 

  44. How to Solve Blown Film Problems, (Lyondell Chemical Company, Cincinnati Technology Center, Cincinnati, OH, USA, 2013)

    Google Scholar 

  45. M. Chanda, S.K. Roy., Plastics Technology Handbook, 4th edn. (CRC Press, Taylor and Francis Group, Florida, 2007)

    Google Scholar 

  46. US4201532 A, Extrusion dies of spiral mandrel type

    Google Scholar 

  47. Polyethylene Film Processing Guide: Quality, Value and Performance, (Formosa Plastics Corporation, Livingston, NJ, USA, 2014)

    Google Scholar 

  48. J.A. Brydson, Plastics Materials (Elsevier, 2013)

    Google Scholar 

  49. J.H. Schut, MDO Films: lots of promise, big challenges. Plast. Technol. (2005)

    Google Scholar 

  50. US 5674607 A, Double bubble process for making strong, thin films

    Google Scholar 

  51. EP 1476294 B1, Polypropylene biaxially oriented film

    Google Scholar 

  52. A. Christie, Flat Die Extrusion Cast Film (Coating & Laminating, Tappi, 2009)

    Google Scholar 

  53. Fundamentals of cast film extrusion technology. Macro White Papers, http://www.macroeng.com/fundamentals-of-cast-film-extrusion-technology.php

  54. Ch. Rauwendaal, Polymer Mixing: A Self-Study Guide (Hanser Publishers, Munich, 1998)

    Google Scholar 

  55. Feedscrews, Davis-Standard Corporation. Pawcatuck, CT, 1997

    Google Scholar 

  56. Plasticating Components Technology. Spirex Corporation, Youngstown, OH, 1977

    Google Scholar 

  57. J.R. Wagner, Jr., Multilayer Flexible Packaging: Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries (William Andrew, 2009)

    Google Scholar 

  58. C. Maier, T. Calafut, Polypropylene: The Definitive User’s Guide and Databook (Taylor & Francis, 2008)

    Google Scholar 

  59. Polypropylene Processing Guide, (INEOS Olefins & Polymers USA, Technical Center, LaPorte, TX, USA, 2007)

    Google Scholar 

  60. I.M. Ward, Structure and Properties of Oriented Polymers (Springer Science & Business Media, 2012)

    Google Scholar 

  61. W.J. Sipe, Polymer extrusion cooling for the 21st century. Novatec White Paper (2002)

    Google Scholar 

  62. A.N. Wilkinson, A.J. Ryan, Polymer Processing and Structure Development (Springer Science & Business Media, 1998)

    Google Scholar 

  63. US 6485282 B2, Device for the extrusion of plastic profiles

    Google Scholar 

  64. D. Cykana, How to size & calibrate profile parts. Plast. Technol. (2011)

    Google Scholar 

  65. Z. Tadmor, C.G. Gogos, Principles of Polymer Processing (Wiley, 2013)

    Google Scholar 

  66. High-density polyethylene pipe systems: meeting the challenges of the 21th century. Plastics Pipe Institutes, www.plasticpipe.org

  67. S. Joseph, How Do Bimodal Polyethylene Resins Provide Improved Pipe Properties (Lyondell, 2005)

    Google Scholar 

  68. L. Hojer, N. Jansen, J. Oderkerk, T. Venator, Copolymerized silane PEX technology a new innovation for production PEX pipes (Borealis0

    Google Scholar 

  69. www.pexinfo.com

  70. Organic Peroxides for PEX—A Pipe and Tubes, AkzoNobel

    Google Scholar 

  71. P. Mapleston, It’s one hot market for profile extruders. Modern Plastics 78, 49–52 (2001)

    Google Scholar 

  72. J. Patterson, New opportunities with wood-flour-foamed PVC. J. Vinyl Add. Tech. 7, 138–141 (2001)

    Article  CAS  Google Scholar 

  73. A.A. Klyosov, Wood-Plastic Composite (Wiley-Interscience, 2007)

    Google Scholar 

  74. M.W. Chastagner, Slit die rheology of HDPE and ABS based wood plastic composites. M.Sc. thesis, Washington State University, 2005

    Google Scholar 

  75. D. Eaves, Handbook of Polymer Foams (iSmithers Rapra Publishing, 2004)

    Google Scholar 

  76. US 3321413 A, Activated azodicarbonamide blowing agent compositions

    Google Scholar 

  77. N.M. Mills, Polyolefin Foams, vol. 14 (Smithers Rapra Publishing, 2003)

    Google Scholar 

  78. http://www.promix-solutions.ch/

  79. US 6284810 B1, Method and apparatus for microcellular polymer extrusion

    Google Scholar 

  80. US 7045556 B2, Polyolefin foams made with isopentane-based blowing agents

    Google Scholar 

  81. G. Li, F. Gunkel, J. Wang, C. B. Park, V. Altstädt, Solubility measurements of N2 and CO2 in polypropylene and ethene/octene copolymer. J. Appl. Polym. Sci. 103, 5–13 (2007)

    Google Scholar 

  82. S.T. Lee, N.S. Ramesh, Polymeric Foams, Mechanism and Materials (CRC Press, Taylor and Francis Group, 2004)

    Google Scholar 

  83. J.M. Dealy, J. Wang, Melt Rheology and its Applications in the Plastics Industry, 2nd edn. (Springer Science+Business Media, Dordrecht, 2013)

    Google Scholar 

  84. W. Michaeli, Extrusion Dies for Plastics and Rubber, vol. 52 (Hanser, 2003)

    Google Scholar 

  85. US 3644230 A, Extrusion process for polyolefin foam

    Google Scholar 

  86. US 4640933 A, Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent

    Google Scholar 

  87. WO 2000027905 A2, Polyolefin/ionomer extruded foam blend

    Google Scholar 

  88. J. Furukawa, Physical Chemistry of Polymer Rheology (Springer, Heidelberg, 2003)

    Google Scholar 

  89. I.M. Hutten, Handbook of Nonwoven Filter Media (Elsevier, 2007)

    Google Scholar 

  90. M. Lewin, J. Preston, Handbook of Fiber Science and Technology: High Technology Fibers, vol. 3 (CRC Press, Taylor and Francis Group, 1996)

    Google Scholar 

  91. C. Vasile, Handbook of Polyolefins, 2nd edn., Revised and Expanded (CRC Press, Taylor and Francis Group, 2000)

    Google Scholar 

  92. M. Lewin, Handbook of Fiber Chemistry, 3rd edn. (CRC Press, Taylor and Francis Group, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Sedláček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sedláček, T. (2016). Processing Techniques for Polyolefins. In: Al-Ali AlMa'adeed, M., Krupa, I. (eds) Polyolefin Compounds and Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25982-6_4

Download citation

Publish with us

Policies and ethics