Skip to main content

Functions of Thyroid Hormones

  • Chapter
  • First Online:
Thyroid Disorders

Abstract

Thyroid hormones (THs) play critical roles in growth, differentiation and metabolism. They are important for optimal functioning of almost all tissues with major effects on metabolic rate and oxygen consumption. The thyroid gland secretes two biologically active thyroid hormones: thyroxine (T4) and 3,5,3′-triiodothyronine (T3). TH synthesis and secretion is exquisitely regulated by a negative-feedback system that involves the hypothalamus, pituitary, and thyroid gland (the HPT axis). Some of the important functions of the thyroid hormones include- neural growth and differentiation, myocardial contractility, regulation of bone formation and resorption, development and function of brown and white adipose tissue, cholesterol metabolism and synthesis, and in-utero they are important for fetal growth and differentiation. Thus, given their pleotropic effects, thyroid hormones are critical for survival and optimal functioning of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopp P. Thyroid hormone synthesis. In: Braverman LE, Utiger RD, editors. The thyroid: fundamental and clinical text. 9th ed. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 52.

    Google Scholar 

  2. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35:159–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Persani L. Hypothalamic thyrotropin releasing hormone and thyrotropin biological activity. Thyroid. 1998;8:941–6.

    Article  CAS  PubMed  Google Scholar 

  4. Harris AR, Christianson D, Smith MS, et al. The physiological role of thyrotropin releasing hormone in the regulation of thyroid stimulating hormone and prolactin secretion in the rat. J Clin Invest. 1978;61:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spitzweg C, Heufelder AE, Morris JC. Thyroid iodine transport. Thyroid. 2000;10:321–30. Review.

    Article  CAS  PubMed  Google Scholar 

  6. Taurog A. Hormone synthesis. In: Braverman L, Utiger R, editors. Werner and Ingbar’s the thyroid. Philadelphia: Lippincott-Raven; 1996. p. 47–81.

    Google Scholar 

  7. Kohrle J. The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Rev Endocr Metab Disord. 2000;1:49–58.

    Article  CAS  PubMed  Google Scholar 

  8. Wolff J, Chaikoff IL. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J Biol Chem. 1948;174:555–64.

    CAS  PubMed  Google Scholar 

  9. Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res. 2006;153:209–35.

    Article  CAS  PubMed  Google Scholar 

  10. Kádár A, Sánchez E, Wittmann G, et al. Distribution of hypophysiotropic thyrotropin releasing hormone (TRH) synthesizing neurons in the hypothalamic paraventricular nucleus of the mouse. J Comp Neurol. 2010;518:3948–61.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Amenta F, Caporuscio D, Ferrante F, et al. Cholinergic nerves in the thyroid gland. Cell Tissue Res. 1978;195:367–70.

    Article  CAS  PubMed  Google Scholar 

  12. Melander A, Sundler F, Westgren U. Sympathetic innervation of the thyroid: variation with species and with age. Endocrinology. 1975;96:102–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schmitmeier S, Thole H, Bader A, et al. Purification and characterization of the thyrotropin releasing hormone (TRH) degrading serum enzyme and its identification as a product of liver origin. Eur J Biochem. 2002;269:1278–86.

    Article  CAS  PubMed  Google Scholar 

  14. Sugrue ML, Vella KR, Morales C, Lopez ME, Hollenberg AN. The thyrotropinreleasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology. 2010;151:793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Segerson TP, Kauer J, Wolfe HC, et al. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science. 1987;238:78–80.

    Article  CAS  PubMed  Google Scholar 

  16. Kakucska I, Rand W, Lechan RM. Thyrotropin releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology. 1992;130:2845–50.

    CAS  PubMed  Google Scholar 

  17. Fekete C, Mihály E, Herscovici S, et al. DARPP32 and CREB are present in type 2 iodothyronine deiodinase producing tanycytes: implications for the regulation of type 2 deiodinase activity. Brain Res. 2000;862:154–61.

    Article  CAS  PubMed  Google Scholar 

  18. Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid. 2005;15:757–68.

    Article  CAS  PubMed  Google Scholar 

  19. Pascual A, Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta. 2013;1830:3908–16.

    Article  CAS  PubMed  Google Scholar 

  20. Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta. 1830;2013:3860–6.

    Google Scholar 

  21. DelViscovo A, Secondo A, Esposito A, et al. Intracellular and plasma membrane-initiated pathways involved in the [Ca2C]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells. American Journal of Physiology. Endocrinol Metab. 2011;302:E1419–30.

    Google Scholar 

  22. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31:139–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Senese R, Cioffi F, de Lange P. Thyroid: biological actions of ‘nonclassical’ thyroid hormones. J Endocrinol. 2014;221:R1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Remaud S, Gothié JD, Morvan-Dubois G, et al. Thyroid hormone signaling and adult neurogenesis in mammals. Front Endocrinol (Lausanne). 2014;5:62.

    Google Scholar 

  25. Oppenheimer JH, Schwartz HL. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev. 1997;18:462–75.

    CAS  PubMed  Google Scholar 

  26. Pop VJ, Kuijpens JL, van Baar AL, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Ofx). 1999;50:149–55.

    Article  CAS  Google Scholar 

  27. Chan S, Kilby MD. Thyroid hormone and central nervous system development. J Endocrinol. 2000;165:1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Novitzky D, Cooper DK. Thyroid hormone and the stunned myocardium. J Endocrinol. 2014;223:R1–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ririe DG, Butterworth JF, Royster RL, et al. Triiodothyronine increases contractility independent of b-adrenergic receptors or stimulation of cyclic-30,50-adenosine monophosphate. Anesthesiology. 1995;82:1004–12.

    Article  CAS  PubMed  Google Scholar 

  30. Klein I. Clinical, metabolic, and organ-specific indices of thyroid function. Endocrinol Metab Clin North Am. 2001;30:415–27.

    Article  CAS  PubMed  Google Scholar 

  31. Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. 2010;205:1–13.

    Article  CAS  PubMed  Google Scholar 

  32. Luo Y, Cha DG, Liu YL, Zhou SF. Coronary microcirculation changes during myocardial stunning in dogs. Cardiology. 2010;117:68–74.

    Article  CAS  PubMed  Google Scholar 

  33. Heusch G. The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. Circ Res. 1980;112:1535–7.

    Article  Google Scholar 

  34. Allain TJ, McGregor AM. Thyroid hormones and bone. J Endocrinol. 1993;139:9–18.

    Article  CAS  PubMed  Google Scholar 

  35. Mosekilde L, Eriksen EF, Charles P. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am. 1990;19:35–63.

    CAS  PubMed  Google Scholar 

  36. Huang BK, Golden LA, Tarjan G, et al. Insulin-like growth factor I production is essential for anabolic effects of thyroid hormone in osteoblasts. J Bone Miner Res. 2000;15:188–97.

    Article  CAS  PubMed  Google Scholar 

  37. Glautchnig H, Varga F, Klaushofer K. Thyroid hormone and retinoic acid induce the synthesis of insulin-like growth factor-binding protein 4 in mouse osteoblastic cells. Endocrinology. 1996;137:281–6.

    Google Scholar 

  38. Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207–33.

    Article  CAS  PubMed  Google Scholar 

  39. Flores-Delgado G, Marsch-Moreno M, Kuri-Harcuch W. Thyroid hormone stimulates adipocyte differentiation of 3 T3 cells. Mol Cell Biochem. 1987;76:35–43.

    Article  CAS  PubMed  Google Scholar 

  40. Oppenheimer JH, Schwartz HL, Lane JT, et al. Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Invest. 1991;87:125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kinlaw WB, Church JL, Harmon J, et al. Direct evidence for a role of the “spot 14” protein in the regulation of lipid synthesis. J Biol Chem. 1995;270:16615–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tuca A, Giralt M, Villarroya F, et al. Ontogeny of thyroid hormone receptors and c-erbA expression during brown adipose tissue development: evidence of fetal acquisition of the mature thyroid status. Endocrinology. 1993;132:1913–20.

    CAS  PubMed  Google Scholar 

  43. Silva JE, Larsen PR. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature. 1983;305:712–3.

    Article  CAS  PubMed  Google Scholar 

  44. Lowell BB, Susulic VS, Hamann A, et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993;366:740–2.

    Article  CAS  PubMed  Google Scholar 

  45. Leonhardt U, Gerdes E, Ritzel U, et al. Immunoreactive leptin and leptin mRNA expression are increased in rat hypo- but not hyperthyroidism. J Endocrinol. 1999;163:115–21.

    Article  CAS  PubMed  Google Scholar 

  46. Oppenheimer JH, Schwartz HL, Mariash CN, et al. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev. 1987;8:288–308.

    Article  CAS  PubMed  Google Scholar 

  47. Oppenheimer JH, Schwartz HL, Strait KA. An integrated view of thyroid hormone actions in vivo. In: Weintraub B, editor. Molecular endocrinology: basic concepts and clinical correlations. New York: Raven; 1995. p. 249–68.

    Google Scholar 

  48. Petty KJ, Desvergne B, Mitsuhashi T, et al. Identification of a thyroid hormone response element in the malic enzyme gene. J Biol Chem. 1990;265:7395–400.

    CAS  PubMed  Google Scholar 

  49. Brent GA. The molecular basis of thyroid hormone action. N Engl J Med. 1994;331:847–53.

    Article  CAS  PubMed  Google Scholar 

  50. Tan KC, Shiu SW, Kung AW. Effect of thyroid dysfunction on high-density lipoprotein subfraction metabolism: roles of hepatic lipase and cholesteryl ester transfer protein. J Clin Endocrinol Metab. 1998;83:2921–4.

    CAS  PubMed  Google Scholar 

  51. Underwood AH, Emmett JC, Ellis D, et al. A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature. 1986;324:425–9.

    Article  CAS  PubMed  Google Scholar 

  52. Falcone M, Miyamoto T, Fierro-Renoy F, et al. Antipeptide polyclonal antibodies specifically recognize each human thyroid hormone receptor isoform. Endocrinology. 1992;131:2419–29.

    CAS  PubMed  Google Scholar 

  53. Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000;14:947–55.

    Article  CAS  PubMed  Google Scholar 

  54. Samuels HH, Forman BM, Horowitz ZD, et al. Regulation of gene expression by thyroid hormone. J Clin Invest. 1988;81:957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wood DF, Docherty K, Ramsden DB, et al. Thyroid status affects the regulation of prolactin mRNA accumulation by tri-iodothyronine and thyrotrophin-releasing hormone in cultured rat anterior pituitary cells. J Endocrinol. 1987;115:497–503.

    Article  CAS  PubMed  Google Scholar 

  56. Sugawara A, Yen PM, Qi YP, et al. Isoform-specific retinoid X receptor (RXR) antibodies detect differential expression of RXR proteins in the pituitary gland. Endocrinology. 1995;136:1766–74.

    CAS  PubMed  Google Scholar 

  57. Chung HR. Adrenal and thyroid function in the fetus and preterm infant. Korean J Pediatr. 2014;57:425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ng PC. The fetal and neonatal hypothalamic-pituitary-adrenal axis. Arch Dis Child Fetal Neonatal Ed. 2000;82:F250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kester MH, Martinez de Mena R. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab. 2004;89:3117–28.

    Article  CAS  PubMed  Google Scholar 

  60. Thorpe-Beeston JG, Nicolaides KH, et al. Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. N Engl J Med. 1991;324:532–6.

    Article  CAS  PubMed  Google Scholar 

  61. Feingold SB, Brown RS. Neonatal thyroid function. NeoReviews. 2010;11:e640–6.

    Article  Google Scholar 

  62. Biswas S, Buffery J, Enoch H, et al. Pulmonary effects of triiodothyronine (T3) and hydrocortisone (HC) supplementation in preterm infants less than 30 weeks gestation: results of the THORN trial: thyroid hormone replacement in neonates. Pediatr Res. 2003;53:48–56.

    CAS  PubMed  Google Scholar 

  63. Seri I, Tan R, Evans J. Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics. 2001;107:1070–4.

    Article  CAS  PubMed  Google Scholar 

  64. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81:1097–142.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanth Dev MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dev, N., Sankar, J., Vinay, M.V. (2016). Functions of Thyroid Hormones. In: Imam, S., Ahmad, S. (eds) Thyroid Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-25871-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25871-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25869-0

  • Online ISBN: 978-3-319-25871-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics