Skip to main content

Human Motion Tracking by Robots

  • Chapter
  • First Online:
Dance Notations and Robot Motion

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 111))

Abstract

Dance notation is a useful tool for providing a high-level description of complex movements to others. Given a description, human dancers are able to reproduce the intended detailed movements easily because they know how to move their joints to generate the described motion either through training or common sense. Robots, on the other hand, lack such training or common sense and therefore are incapable of creating fine details of the motion on their own. One possible way to “teach” a robot exactly how to move its joints is to use human motion data that include all the details. Unfortunately, using human motions for controlling robots is not straightforward due to various differences between human and robot bodies. This article will review some of the difficulties and give a brief survey on techniques for mapping human motions to robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Coros, A. Karpathy, B. Jones, L. Reveret, M. van de Panne, Locomotion skills for simulated quadrupeds. ACM Trans. Graph. 30(4), Article 59 (2011)

    Google Scholar 

  2. M. Posa, C. Cantu, R. Tedrake, A direct method for trajectory optimization of rigid bodies. Int. J. Robot. Res. 33(1), 69–81 (2014)

    Article  Google Scholar 

  3. Y. Nakanishi, Y. Asano, T. Kozuki, H. Mizoguchi, Y. Motegi, M. Osada, T. Shirai, J. Urata, K. Okada, M Inaba, Design concept of detail musculoskeletal humanoid “Kenshiro”—toward a real human body musculoskeletal simulator, in Proceedings of the 2012 IEEE-RAS International Conference on Humanoid Robots (2012), pp. 1–6

    Google Scholar 

  4. M. Vukobratovic, J. Stepanenko, On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972)

    Article  MATH  Google Scholar 

  5. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of IEEE International Conference on Robotics and Automation (2003), pp. 1620–1626

    Google Scholar 

  6. T. Sugihara, Simulated regulator to synthesize ZMP manipulation and foot location for autonomous control of biped robots, in Proceedings of IEEE International Conference on Robotics and Automation (2008), pp. 1264–1269

    Google Scholar 

  7. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, K. Fujiwara, M. Morisawa, A universal stability criterion of the foot contact of legged robots-adios ZMP, in Proceedings of IEEE International Conference on Robotics and Automation (2006), pp. 1976–1983

    Google Scholar 

  8. Y. Zheng, K. Yamane, Adapting human motions to humanoid robots through time warping based on a general motion feasibility index, in Proceedings of IEEE International Conference on Robotics and Automation (2015, in press)

    Google Scholar 

  9. S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa, K. Ikeuchi, Learning from observation paradigm: leg task models for enabling a biped humanoid robot to imitate human dances. Int. J. Robot. Res. 26(8), 829–844 (2010)

    Article  Google Scholar 

  10. K. Miura, M. Morisawa, F. Kanehiro, S. Kajia, K. Kaneko, K. Yokoi, Human-like walking with toe supporting for humanoids, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2011), pp. 4428–4435

    Google Scholar 

  11. V.B. Zordan, J.K. Hodgins. Motion Capture-Driven Simulations that Hit and React, in Proceedings of ACM SIGGRAPH Symposium on Computer Animation, San Antonio, TX, July 2002, pp. 89–96

    Google Scholar 

  12. A. Safonova, J.K. Hodgins, N.S. Pollard, Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)

    Article  Google Scholar 

  13. K.W. Sok, M.M. Kim, J.H. Lee, Simulating biped behaviors from human motion data. ACM Trans. Graph. 26(3), 107 (2007)

    Article  Google Scholar 

  14. Ch. Ott, D.H. Lee, Y. Nakamura, Motion capture based human motion recognition and imitation by direct marker control, in Proceedings of IEEE-RAS International Conference on Humanoid Robots (2008), pp. 399–405

    Google Scholar 

  15. M. Da Silva, Y. Abe, J. Popović, Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27(3), 82 (2008)

    Article  Google Scholar 

  16. U. Muico, Y.J. Lee, J. Popović, Z. Popović, Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 81 (2009)

    Article  Google Scholar 

  17. K.K. Yin, K. Loken, M. van de Panne, SIMBICON: simple biped locomotion control. ACM Trans. Graph. 26(3), 105 (2007)

    Article  Google Scholar 

  18. S. Jain, Y. Ye, C.K. Liu, Optimization-based interactive motion synthesis. ACM Trans. Graph. 28(1), 10 (2009)

    Article  Google Scholar 

  19. S. Coros, P. Beaudoin, M. van de Panne, Generalized biped walking control. ACM Trans. Graph. 29(4), Article 130 (2010)

    Google Scholar 

  20. K. Yamane, Y. Nakamura, Dynamics filter-concept and implementation of on-line motion generator for human figures. IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)

    Article  Google Scholar 

  21. K. Yamane, J.K. Hodgins, Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data, in Proceedings of IEEE/RSJ International Conference on Intelligent Robot Systems, Oct 2009, pp. 2510–2517

    Google Scholar 

  22. K. Yamane, S.O. Anderson, J.K. Hodgins, Controlling humanoid robots with human motion data: experimental validation, in Proceedings of IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, Dec 2010, pp. 504–510

    Google Scholar 

  23. K. Yamane, Practical kinematic and dynamic calibration methods for force-controlled humanoid robots, in Proceedings of IEEE-RAS International Conference on Humanoids Robots, Bled, Slovenia, Oct 2011

    Google Scholar 

  24. J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

    Article  Google Scholar 

  25. C.G. Atkeson, S. Schaal, Robot learning from demonstration, in International Conference on Machine Learning (1997), pp. 12–20

    Google Scholar 

  26. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato, Learning from demonstration and adaptation of biped locomotion. Robot. Auton. Syst. 47, 79–91 (2004)

    Article  Google Scholar 

  27. J. Kober, A. Wilhelm, E. Oztop, J. Peters, Reinforcement learning to adjust parameterized motor primitives to new situations. Auton. Robots 33, 361–379 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsu Yamane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamane, K. (2016). Human Motion Tracking by Robots. In: Laumond, JP., Abe, N. (eds) Dance Notations and Robot Motion. Springer Tracts in Advanced Robotics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-25739-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25739-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25737-2

  • Online ISBN: 978-3-319-25739-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics