Skip to main content

On Finite Element Approximation of Fluid-Structure Interactions with Consideration of Transition Model

  • Conference paper
  • First Online:
Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 108))

  • 1513 Accesses

Abstract

In this paper the numerical approximation of turbulent and laminar incompressible turbulent flow is considered. The mathematical model is either based on incompressible Navier-Stokes equations or on Reynolds averaged Navier-Stokes (RANS) equations enclosed by a turbulence model. The problem is discretized in space by the finite element method, the detailed description of the stabilization shall be given and several aspects of approximation of the turbulence/transition model shall be given. The numerical results of the finite element method shall be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berci, M., Mascetti, S., Incognito, A., Gaskell, P.H., Toropov, V.V.: Gust response of a typical section via CFD and analytical solutions. In: Pereira, J.C.F., Sequeira, A. (eds.) ECCOMAS CFD 2010, European Conference on Computational Fluid Dynamics, Lisbon, p. 10 (2010)

    Google Scholar 

  2. Davis, T.A., Duff, I.S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25, 1–19 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dowell, E.H., Clark, R.N.: A Modern Course in Aeroelasticity. Solid Mechanics and Its Applications. Kluwer Academic, Dordrecht/Boston (2004)

    Google Scholar 

  4. Gelhard, T., Lube, G., Olshanskii, M.A., Starcke, J.-H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177, 243–267 (2005)

    Google Scholar 

  5. Kok, J.C.: Resolving the dependence on free-stream values for the k-omega turbulence model. Technical report, National Aerospace Laboratory NLR (1999)

    Google Scholar 

  6. Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12), 2894–2906 (2009)

    Google Scholar 

  7. Menter, F.R.: Two-equations eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  8. Menter, F.R., Langtry, R., Völker, S.: Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77(1–4), 277–303 (2006)

    Article  MATH  Google Scholar 

  9. Nobile, F.: Numerical approximation of fluid-structure interaction problems with application to haemodynamics. PhD thesis, Ecole Polytechnique Federale de Lausanne (2001)

    Google Scholar 

  10. Nomura, T., Hughes, T.J.R.: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95, 115–138 (1992)

    Article  MATH  Google Scholar 

  11. Paidoussis, M.P.: Fluid-Structure Interactions. Slender Structures and Axial Flow, 2nd edn. Academic/Elsevier, Amsterdam (2013)

    Google Scholar 

  12. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  13. Suluksna, K., Juntasaro, E.: Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence. Int. J. Heat Fluid Flow 29(1), 48–61 (2008)

    Article  Google Scholar 

  14. Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation. J. Turbomach. 125(3), 455–464 (2003)

    Article  Google Scholar 

  15. Sváček, P., Feistauer, M., Horáček, J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes. J. Fluids Struct. 23(3), 391–411 (2007)

    Article  Google Scholar 

  16. Sváček, P., Horáček, J.: On mathematical modeling of fluid–structure interactions with nonlinear effects: finite element approximations of gust response. J. Comput. Appl. Math. 273(0), 394–403 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, La Cãnada (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grant No. P101/12/1271 of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sváček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sváček, P. (2015). On Finite Element Approximation of Fluid-Structure Interactions with Consideration of Transition Model. In: Knobloch, P. (eds) Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014. Lecture Notes in Computational Science and Engineering, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-25727-3_24

Download citation

Publish with us

Policies and ethics