Skip to main content

Constrained Analytical Interrelations in Neutrino Mixing

  • Conference paper
  • First Online:
XXI DAE-BRNS High Energy Physics Symposium

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 174))

  • 589 Accesses

Abstract

Hermitian squared mass matrices of charged leptons and light neutrinos in the flavor basis are studied under general additive lowest order perturbations away from the tribimaximal (TBM) limit in which a weak basis with mass diagonal charged leptons is chosen. Simple analytical expressions are found for the three measurable TBM-deviants in terms of perturbation parameters appearing in the neutrino and charged lepton eigenstates in the flavor basis. Taking unnatural cancellations to be absent and charged lepton perturbation parameters to be small, interrelations are derived among masses, mixing angles and the amount of CP-violation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that \(\sqrt{2}~c_{12}+s_{12} =\sqrt{3}+O(\varepsilon ^2)\) and \(c_{23}+s_{23}=\sqrt{2} + O(\varepsilon ^2)\) are automatic.

References

  1. K. Abe et al., Phys. Rev. Lett. 107, 181802 (2011)

    Article  ADS  Google Scholar 

  2. Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012)

    Article  ADS  Google Scholar 

  3. C. Adams et al., arXiv:1307.7335 [hep-ph]

  4. S.K. Agarwalla, S. Prakash, S. Uma Sankar, arXiv:1301.2574 [hep-ph]

  5. S.K. Agarwalla et al., arXiv:1312.6520 [hep-ph]

  6. J.K. Ahn et al., Phys. Rev. Lett. 108, 191802 (2012)

    Article  ADS  Google Scholar 

  7. G. Atlarelli, F. Feruglio, New J. Phys. 6, 106 (2006)

    Google Scholar 

  8. G. Altarelli, F. Feruglio, L. Merlo, E. Stamou, JHEP 1208, 012 (2012)

    Google Scholar 

  9. G. Altarelli, S. Feruglio, L. Merlo, Fortsch. Phys. 61, 507 (2013)

    Article  ADS  Google Scholar 

  10. F.P. An et al., Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  Google Scholar 

  11. J. Beringer et al., PDG. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  12. D. Borah, Nucl. Phys. B 876, 575 (2013)

    Article  ADS  Google Scholar 

  13. B. Brahmachari, A. Raychaudhuri, Phys. Rev. D 86, R051302 (2012)

    Article  ADS  Google Scholar 

  14. B. Brahmachari, P. Roy, JHEP 1502, 135 (2015)

    Article  ADS  Google Scholar 

  15. F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, arXiv:1312.2878 [hep-ph]

  16. A. Chatterjee, P. Ghosal, S. Goswami, S.K. Raut, arXiv:1302.1370 [hep-ph]

  17. A. de Gouvea et al., arXiv:1310.4340 [hep-ph]

  18. D.V. Forero, M. Tortola, J.W.F. Valle, Phys. Rev. D 86, 073012 (2012)

    Article  ADS  Google Scholar 

  19. M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz, JHEP 1212, 123 (2012)

    Article  ADS  Google Scholar 

  20. L.J. Hall, G.G. Ross, JHEP 1311, 091 (2013)

    Article  ADS  Google Scholar 

  21. P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002)

    Article  ADS  Google Scholar 

  22. X. He, A. Zee, Phys. Rev. D 84, 053004 (2011)

    Article  ADS  Google Scholar 

  23. D. Hernandez, A. Y Smirnov, Phys. Rev. D 86, 003014 (2012); ibid D 87, 053005 (2013)

    Google Scholar 

  24. International Design Study of the Neutrino Factory, http://www.ids-nf.org

  25. S.F. King, C. Luhn, JHEP 11099, 042 (2011)

    Article  Google Scholar 

  26. S. King, C. Luhn, Rept. Prog. Phys. T6, 006201 (2013)

    Google Scholar 

  27. J. Lesgourgues, S. Pastor, Adv. High Energy Phys. 2012, 608515 (2012)

    Article  Google Scholar 

  28. P.A.N. Machado, H. Minakata, H. Nunokawa, R.R. Funchal, arXiv:1307.3248 [hep-ph]

  29. R.N. Mohapatra, A.Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56, 569 (2006)

    Article  ADS  Google Scholar 

  30. S. Parke, arXiv:1310.5992 [hep-ph]

  31. S. Pramanik, A. Raychaudhuri, Phys. Rev. D 88, 093009 (2013)

    Article  ADS  Google Scholar 

  32. D.A. Sierra, I. de M. Varzielas, E. Houet. Phys. Rev. D 87, 09309 (2013)

    Google Scholar 

  33. A. Stahl et al., Report No. CERN-SPSC-2012-021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Probir Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brahmachari, B., Roy, P. (2016). Constrained Analytical Interrelations in Neutrino Mixing. In: Bhuyan, B. (eds) XXI DAE-BRNS High Energy Physics Symposium. Springer Proceedings in Physics, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-319-25619-1_55

Download citation

Publish with us

Policies and ethics