Skip to main content

Game Theory and Security: Recent History and Future Directions

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9406))

Included in the following conference series:

  • 1864 Accesses

Abstract

Until twenty years ago, the application of game theory (GT) was mostly limited to toy examples. Today, as a result of major technological and algorithmic advances, researchers use game-theoretical models to motivate complex security decisions relating to real-life security problems. This requires models that are an accurate reflection of reality. This paper presents a biased bird’s-eye view of the security-related GT research of the past decade. It presents this research as a move towards increasingly accurate and comprehensive models. We discuss the need for adversarial modeling as well as the internalization of externalities due to security interdependencies. Finally, we identify three promising directions for future research: relaxing common game-theoretical assumptions, creating models that model interdependencies as well as a strategic adversary and modelling interdependencies between attackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The 2015 version of Panama Institute’s yearly cost of data breach study shows (\(\bullet \)) an increased number of data breaches resulting from attacks by malicious attackers (47 % versus 37 % in 2013), (\(\bullet \)) a 23 % increase in total cost of data breach since 2013, and (\(\bullet \)) shows that attacks have increased in frequency as well as in the cost to remediate the consequences [12, 13]. ENISA, the European Union Agency for Network and Information Security, sees a 25 % increase in the number of data breaches in 2014 compared to 2013 and refers to 2014 as “the year of the data breach’ [16]. They list nearly all cyber threats, such as denial of service attacks and cyber espionage, as increasing.

  2. 2.

    We think this is a confusing name, because there are a lot of security-related games that are not security games.

  3. 3.

    http://teamcore.usc.edu

  4. 4.

    http://heartbleed.com

  5. 5.

    These games do not fit our definition of interdependent game because there is no attack or attacker.

References

  1. Alpcan, T., Başar, T., et al.: Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  2. Anderson, R.J.: Why information security is hard - an economic perspective. In: Proceedings of the ACSAC (2001)

    Google Scholar 

  3. Anderson, R.J., Moore, T., et al.: The economics of information security. Science 314, 610–613 (2006)

    Article  Google Scholar 

  4. Avenhaus, R., Canty, M.J., et al.: Inspection games. In: Meyers, R.A. (ed.) Computational Complexity, pp. 1605–1618. Springer, New York (2012)

    Chapter  Google Scholar 

  5. Axelrod, R., Iliev, R., et al.: Timing of cyber conflict. Proc. Natl. Acad. Sci. U.S.A 111, 1298–1303 (2014)

    Article  Google Scholar 

  6. Ayres, I., Levitt, S.D., et al.: Measuring Positive Externalities from Unobservable Victim Precaution: An Empirical Analysis of Lojack. Working Paper. National Bureau of Economic Research, Cambridge (1997)

    Google Scholar 

  7. Böhme, R., Nowey, T.: Economic security metrics. In: Eusgeld, I., Freiling, F.C., Reussner, R. (eds.) Dependability Metrics. LNCS, vol. 4909, pp. 176–187. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Böhme, R., Schwartz, G., et al.: Modeling cyber-insurance: towards a unifying framework, June 2010

    Google Scholar 

  9. Cavusoglu, H., Raghunathan, S., et al.: Decision-theoretic and game-theoretic approaches to IT security investment. J. Manag. Inf. Syst. 25, 281–304 (2008)

    Article  Google Scholar 

  10. Chan, H., Ceyko, M., et al.: Interdependent defense games: Modeling interdependent security under deliberate attacks. ArXiv Prepr. http://www.ArXiv12104838 (2012)

  11. Christin, N.: Network security games: combining game theory, behavioral economics, and network measurements. In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp. 4–6. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Cost of Data Breach Study: Global Analysis. Ponemon Institute (2013)

    Google Scholar 

  13. Cost of Data Breach Study: Global Analysis. Ponemon Institute (2015)

    Google Scholar 

  14. van Dijk, M., Juels, A., et al.: FlipIt: The game of “stealthy takeover”. J. Cryptol. 26(4), 655–713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dodis, Y., Rabin, T., et al.: Cryptography and game theory. In: Algorithmic Game Theory (2007)

    Google Scholar 

  16. ENISA Threat Landscape 2014 - Overview of current and emerging cyber-threats. Report/Study. ENISA (2015)

    Google Scholar 

  17. Franklin, J., Perrig, A., et al.: An inquiry into the nature and causes of the wealth of internet miscreants. In: Proceedings of the ACM CCS (2007)

    Google Scholar 

  18. Gordon, L.A., Loeb, M.P., et al.: The economics of information security investment. ACM Trans. Inf. Syst. Secur. 5, 438–457 (2002)

    Article  Google Scholar 

  19. Halpern, J.Y., Pass, R., et al.: Game theory with costly computation. In: Innovations in Computer Science, August 2010

    Google Scholar 

  20. Halpern, J., Teague, V., et al.: Rational secret sharing and multiparty computation: extended abstract. In: Proceedings of the ACM STOC (2004)

    Google Scholar 

  21. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysisof DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 72–86. Springer, Heidelberg (2014)

    Google Scholar 

  22. Kar, D., Fang, F., et al.: “A game of thrones”: when human behavior models compete in repeated stackelberg security games. In: Proceedings of the AAMAS (2015)

    Google Scholar 

  23. Katz, J.: Bridging game theory and cryptography: recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Kiekintveld, C., Jain, M., et al.: Computing optimal randomized resource allocations for massive security games. In: Proceedings of the AAMAS (2009)

    Google Scholar 

  25. Kunreuther, H., Heal, G., et al.: Interdependent security. J. Risk Uncertain. 26, 231–249 (2003)

    Article  MATH  Google Scholar 

  26. Laszka, A., Felegyhazi, M., et al.: A survey of interdependent security games. ACM Comput. Surv. CSUR 47 (2014)

    Google Scholar 

  27. Laszka, A., Johnson, B., Grossklags, J.: Mitigation of targeted and non-targeted covert attacks as a timing game. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.) GameSec 2013. LNCS, vol. 8252, pp. 175–191. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Leeson, P.T., Coyne, C.J., et al.: The Economics of Computer Hacking. SSRN Scholarly Paper, Social Science Research Network (2005)

    Google Scholar 

  29. Lou, J., Smith, A.M., et al.: Multidefender Security Games (2015)

    Google Scholar 

  30. Maillé, P., Tuffin, B., Reichl, P.: Interplay between security providers, consumers, and attackers: a weighted congestion game approach. In: Altman, E., Katz, J., Baras, J.S. (eds.) GameSec 2011. LNCS, vol. 7037, pp. 67–86. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Manshaei, M., Zhu, Q., et al.: Game theory meets network security and privacy. ACM Comput. Surv. CSUR 45, 25:1–25:39 (2013)

    MATH  Google Scholar 

  32. Moore, T., Clayton, R., et al.: The economics of online crime. J. Econ. Perspect. 23, 3–20 (2009)

    Article  Google Scholar 

  33. Neumann, J.V., Morgenstern, O., et al.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  34. Nguyen, T.H., Yang, R., et al.: Analyzing the effectiveness of adversary modeling in security games. In: Proceedings of the AAAI (2013)

    Google Scholar 

  35. Nojoumian, M., Stinson, D.R.: Socio-rational secret sharing as a new direction in rational cryptography. In: Walrand, J., Grossklags, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 18–37. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  36. Ogut, H., Menon, N., et al.: Cyber insurance and IT security investment: impact of interdependent risk. In: WEIS (2005)

    Google Scholar 

  37. Pita, J., Jain, M., et al.: Deployed ARMOR protection: the application of a game theoretic model for security at the los angeles international airport. In: Proceedings of the AAMAS (2007)

    Google Scholar 

  38. Pita, J., Jain, M., et al.: Los angeles airport security. AI Mag. 30, 43–57 (2009)

    Google Scholar 

  39. Pita, J., Jain, M., et al.: Robust solutions to stackelberg games: addressing bounded rationality and limited observations in human cognition. Artif. Intell. 174, 1142–1171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pita, J., John, R., et al.: A robust approach to addressing human adversaries in security games. In: Proceedings of the AAMAS (2012)

    Google Scholar 

  41. Qian, Y., Haskell, W.B., et al.: Robust strategy against unknown risk-averse attackers in security games. In: Proceedings of the AAMAS (2015)

    Google Scholar 

  42. Roy, S., Ellis, C., et al.: A survey of game theory as applied to network security. In: Proceedings of the 43rd Hawaii International Conference on System Sciences (2010)

    Google Scholar 

  43. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  44. Varian, H.: System reliability and free riding. In: Camp, L.J., Lewis, S. (eds.) Economics of Information Security, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  45. Vorobeychik, Y., Letchford, J., et al.: Securing interdependent assets. Auton. Agent. Multi-Agent Syst. 29(2), 305–333 (2014)

    Article  Google Scholar 

  46. Yang, R., Ford, B., et al.: Adaptive resource allocation for wildlife protection against illegal poachers. In: Proceedings of the AAMAS (2014)

    Google Scholar 

  47. Yang, R., Kiekintveld, C., et al.: Improving resource allocation strategies against human adversaries in security games: an extended study. Artif. Intell. 195, 440–469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, R., Kiekintveld, C., et al.: Improving resource allocation strategy against human adversaries in security games. In: Proceedings of the IJCAI (2011)

    Google Scholar 

  49. Yin, Z., Jain, M., et al.: Risk-averse strategies for security games with execution and observational uncertainty. In: Proceedings of the AAAI, April 2011

    Google Scholar 

Download references

Acknowledgements

This research is partially funded by the Research Fund KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. A. Merlevede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Merlevede, J.S.A., Holvoet, T. (2015). Game Theory and Security: Recent History and Future Directions. In: Khouzani, M., Panaousis, E., Theodorakopoulos, G. (eds) Decision and Game Theory for Security. GameSec 2015. Lecture Notes in Computer Science(), vol 9406. Springer, Cham. https://doi.org/10.1007/978-3-319-25594-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25594-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25593-4

  • Online ISBN: 978-3-319-25594-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics