Skip to main content

Multi-agent Path Planning in Known Dynamic Environments

  • Conference paper
  • First Online:
PRIMA 2015: Principles and Practice of Multi-Agent Systems (PRIMA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9387))

Abstract

We consider the problem of planning paths of multiple agents in a dynamic but predictable environment. Typical scenarios are evacuation, reconfiguration, and containment. We present a novel representation of abstract path-planning problems in which the stationary environment is explicitly coded as a graph (called the arena) while the dynamic environment is treated as just another agent. The complexity of planning using this representation is pspace-complete. The arena complexity (i.e., the complexity of the planning problem in which the graph is the only input, in particular, the number of agents is fixed) is np-hard. Thus, we provide structural restrictions that put the arena complexity of the planning problem into ptime(for any fixed number of agents). The importance of our work is that these structural conditions (and hence the complexity results) do not depend on graph-theoretic properties of the arena (such as clique- or tree-width), but rather on the abilities of the agents.

This work has been partially supported by the FP7 EU project 600958-SHERPA and the ERC Advanced Grant “RACE” (291528) at Oxford. Sasha Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled multi-agent systems. In: Rintanen, J., Nebel, B., Beck, J.C., Hansen, E.A., (eds. ) ICAPS, pp. 28–35. AAAI (2008)

    Google Scholar 

  2. Bylander, T.: The computational complexity of propositional strips planning. Artificial Intelligence 69(1), 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, H., Giménez, O.: Causal graphs and structurally restricted planning. J. Comput. Syst. Sci. 76(7), 579–592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooper, M.C., Maris, F., Régnier, P.: Monotone temporal planning: Tractability, extensions and applications. J. Artif. Intell. Res. (JAIR) 50, 447–485 (2014)

    MathSciNet  MATH  Google Scholar 

  5. De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for temporally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Dean, T.L., Givan, R., Kim, K.: Solving stochastic planning problems with large state and action spaces. In: Simmons, R.G., Veloso, M.M., Smith, S.F., (eds.) AIPS, pp. 102–110. AAAI (1998)

    Google Scholar 

  7. Enderton, H.: A mathematical introduction to logic. Academic Press (1972)

    Google Scholar 

  8. Flake, G.W., Baum, E.B.: Rush hour is pspace-complete, or “why you should generously tip parking lot attendants”. Theoretical Computer Science 270(1–2), 895–911 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool (2013)

    Google Scholar 

  10. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice. Elsevier (2004)

    Google Scholar 

  11. Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem. Technical report, Courant Institute of Mathematical Sciences, New York (1984)

    Google Scholar 

  13. Jamroga, W.: Strategic planning through model checking of ATL formulae. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 879–884. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial intelligence 101(1), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: FOCS, pp. 241–250. IEEE (1984)

    Google Scholar 

  16. Krontiris, A., Sajid, Q., Bekris, K.: Towards using discrete multiagent pathfinding to address continuous problems. In: Proc, AAAI Workshop on Multiagent Pathfinding (2012)

    Google Scholar 

  17. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating room planning with elective and emergency demand for surgery. European Journal of Operational Research 185(3), 1026–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-C. Latombe. Robot motion planning, volume 124 of International Series in Engineering and Computer Science. Springer, 2012

    Google Scholar 

  19. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  20. Lumelsky, V.J., Stepanov, A., et al.: Dynamic path planning for a mobile automaton with limited information on the environment. Automatic Control, IEEE Transactions on 31(11), 1058–1063 (1986)

    Article  MATH  Google Scholar 

  21. Mogavero, F., Murano, A., Vardi, M.Y.: Relentful strategic reasoning in alternating-time temporal logic. Journal of Logic and Computation (2014) (to appear)

    Google Scholar 

  22. Murano, A., Sorrentino, L.: A game-based model for human-robots interaction. In: Workshop “From Objects to Agents” (WOA) CEUR Workshop Proceedings, vol. 1382, pp. 146–150. CEUR-WS.org (2015)

    Google Scholar 

  23. Papadimitriou, C.H., Raghavan, P., Sudan, M., Tamaki, H.: Motion planning on a graph (extended abstract). In: FOCS, pp. 511–520. IEEE (1994)

    Google Scholar 

  24. Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-deterministic domains. In: Walsh, T., (ed.) IJCAI, pp. 479–486. IJCAI/AAAI (2001)

    Google Scholar 

  25. Pistore, M., Vardi, M.Y.: The planning spectrum - one, two, three, infinity. J. Artif. Intell. Res. (JAIR) 30, 101–132 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Röger, G., Helmert, M.: Non-optimal multi-agent pathfinding is solved (since 1984). In: Borrajo, D., Felner, A., Korf, R.E., Likhachev, M., López, C.L., Ruml, W., Sturtevant, N.R., (eds.) SOCS. AAAI (2012)

    Google Scholar 

  27. Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., Feyzeau, P.: Path planning: a 2013 survey. In: Industrial Engineering and Systems Management (IESM), pp. 1–8, October 2013

    Google Scholar 

  28. Surynek, P.: An application of pebble motion on graphs to abstract multi-robot path planning. In: ICTAI, pp. 151–158. IEEE (2009)

    Google Scholar 

  29. Tromp, J., Cilibrasi, R.: Limits of Rush Hour Logic Complexity. In: CoRR, abs/cs/0502068 (2005)

    Google Scholar 

  30. van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: Robotics Science and Systems V (2009)

    Google Scholar 

  31. van der Hoek, W., Wooldridge, M.:Tractable multiagent planning for epistemic goals. In: AAMAS, pp. 1167–1174. ACM (2002)

    Google Scholar 

  32. Wilfong, G.T.: Motion planning in the presence of movable obstacles. Ann. Math. Artif. Intell. 3(1), 131–150 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Perelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Murano, A., Perelli, G., Rubin, S. (2015). Multi-agent Path Planning in Known Dynamic Environments. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds) PRIMA 2015: Principles and Practice of Multi-Agent Systems. PRIMA 2015. Lecture Notes in Computer Science(), vol 9387. Springer, Cham. https://doi.org/10.1007/978-3-319-25524-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25524-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25523-1

  • Online ISBN: 978-3-319-25524-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics