Skip to main content

Approximate Bayesian Estimation for Multivariate Count Time Series Models

  • Conference paper
  • First Online:
Ordered Data Analysis, Modeling and Health Research Methods

Abstract

In many areas of application, there is increasing interest in modeling multivariate time series of counts on several subjects as a function of subject-specific and time-dependent covariates. We propose a level correlated model (LCM) to account for the association among the components of the response vector, as well as possible overdispersion. The flexible LCM framework allows us to combine different marginal count distributions and to build a hierarchical model for the vector time series of counts. We employ the Integrated Nested Laplace Approximation (INLA) for fast approximate Bayesian modeling using the R package INLA (r-inla.org). We illustrate it by modeling the monthly prescription counts by physicians of a focal drug from a multinational pharmaceutical firm along with monthly counts of other drugs with a sizable market share for the same therapeutic category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitchison, J., and C. Ho. 1989. The multivariate Poisson-log normal distribution. Biometrika 76(4): 643–653.

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlin, B., N. Polson, and D. Stoffer. 1992. A Monte Carlo approach to nonnormal and nonlinear state-space modeling. Journal of the American Statistical Association 87: 493–500.

    Article  Google Scholar 

  3. Carter, C., and R. Kohn. 1994. On Gibbs sampling for state-space models. Biometrika 81: 541–553.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, M.-H., Q.-M. Shao, and J. Ibrahim. 2000. Monte Carlo methods in Bayesian computation. New York: Springer.

    Book  MATH  Google Scholar 

  5. Davis, R., W. Dunsmuir, and S. Streett. 2003. Observation-driven models for Poisson counts. Biometrika 90(4): 777–790.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gamerman, D. 1998. Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85(1): 215–227.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gamerman, D., and H. Migon. 1993. Dynamic hierarchical models. Journal of the Royal Statistical Society Series (B) 55(3): 629–642.

    MathSciNet  MATH  Google Scholar 

  8. Hu, S. 2012. Dynamic modeling of discrete-valued time series with applications. Ph.D. Thesis, University of Connecticut.

    Google Scholar 

  9. Kalman, R. 1960. A new approach to linear filtering and prediction theory. Transactions of the ASME Series D, Journal of Basic Engineering 82: 35–45.

    Article  Google Scholar 

  10. Kalman, R., and R. Bucy. 1961. New results in filtering and prediction theory. Transactions of the ASME Series D, Journal of Basic Engineering 83: 95–108.

    Article  MathSciNet  Google Scholar 

  11. Karlis, D., and L. Meligkotsidou. 2005. Multivariate Poisson regression with covariance structure. Statistics and Computing 15: 255–265.

    Article  MathSciNet  Google Scholar 

  12. Karlis, D., and L. Meligkotsidou. 2007. Finite mixtures of multivariate Poisson regression with application. Journal of Statistical Planning and Inference 137: 1942–1960.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kedem, B., and K. Fokianos. 2002. Regression models for time series analysis. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  14. Lambert, D. 1992. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1): 1–13.

    Article  MATH  Google Scholar 

  15. Landim, F., and D. Gamerman. 2006. Dynamic hierarchical models: an extension to matrix-variate observations. Computational Statistics and Data Analysis 35: 11–42.

    Google Scholar 

  16. Ma, J., K. Kockelman, and P. Damien. 2008. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accident Analysis and Prevention 40(3): 964–975.

    Article  Google Scholar 

  17. McCullagh, P., and J. Nelder. 1989. Generalized linear models, 2nd ed. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  18. Mizik, N., and R. Jacobson. 2004. Are physicians easy marks? Quantifying the effects of detailing and sampling on new prescriptions. Management Science 50(12): 1704–1715.

    Article  Google Scholar 

  19. Montoya, R., O. Netzer, and K. Jedidi. 2010. Dynamic allocation of pharmaceutical detailing and sampling for long-term profitability. Marketing Science 29(5): 909–924.

    Article  Google Scholar 

  20. Park, E., and D. Lord. 2007. Multivariate Poisson-lognormal models for jointly modeling crash frequency by severity. Transportation Research Record: Journal of the Transportation Research Board 2009(1): 1–6.

    Article  Google Scholar 

  21. Ravishanker, N., V. Serhiyenko, and M. Willig. 2014. Hierarchical dynamic models for multivariate times series of counts. Statistics and Its Interface 7: 559–570.

    Article  MathSciNet  Google Scholar 

  22. Ravishanker, N., R. Venkatesan, and S. Hu 2015. Dynamic models for time series of counts with a marketing application. In Handbook of discrete-valued time series, ed. R.A. Davis, S.H. Holan, R.L. Lund, and N. Ravishanker, 1–10.

    Google Scholar 

  23. Rue, H., and L. Held. 2005. Gaussian Markov random fields theory and applications. New York: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  24. Rue, H., and S. Martino. 2007. Approximate Bayesian inference for hierarchical Gaussian Markov random fields models. Journal of Statistical Planning and Inference 137: 3177–3192.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rue, H., S. Martino, and N. Chopin. 2009. Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace Approximations. Journal of the Royal Statistical Society Series B 71: 319–392.

    Article  MathSciNet  MATH  Google Scholar 

  26. Venkatesan, R., W. Reinartz, and N. Ravishanker. 2012. The role of attitudinal information in CLV-based customer management. MSI Working Paper Series, 12: 107.

    Google Scholar 

  27. Venkatesan, R., W. Reinartz, and N. Ravishanker, 2014. ZIP models for CLV based customer management using attitudinal and behavioral data. Technical Report, Department of Statistics, University of Connecticut.

    Google Scholar 

  28. West, M., and P. Harrison. 1989. Bayesian forecasting and dynamic models. New York: Springer.

    Book  MATH  Google Scholar 

  29. Zeger, S. 1998. A regression model for time series of counts. Biometrika 75: 621–629.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Ravishanker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Serhiyenko, V., Ravishanker, N., Venkatesan, R. (2015). Approximate Bayesian Estimation for Multivariate Count Time Series Models. In: Choudhary, P., Nagaraja, C., Ng, H. (eds) Ordered Data Analysis, Modeling and Health Research Methods. Springer Proceedings in Mathematics & Statistics, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-319-25433-3_10

Download citation

Publish with us

Policies and ethics