Skip to main content

Photocatalytic Approach for CO2 Fixation

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

In order to address the depletion of fossil fuels and the serious environmental problems accompanying their combustion and the concomitant CO2 emission, large-scale chemical conversion of CO2 into energy-rich materials would be an ultimate solution, and several reactions have been proposed. There have been a lot of challenges that have to be addressed in this field of research, but several breakthroughs have been achieved in recent 10 years. In this chapter, photocatalytic CO2 reduction systems, which are of particular importance, are reviewed, with a focus on both homogeneous and heterogeneous aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Article  Google Scholar 

  2. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354

    Article  Google Scholar 

  3. Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy) 2+3 –Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 536–538

    Google Scholar 

  4. Yui T, Kan A, Saitoh C, Koike K, Ibusuki T, Ishitani O (2011) Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl Mater Interfaces 3:2594–2600

    Article  Google Scholar 

  5. Hori H, Koike K, Ishizuka M, Takeuchi K, Ibusuki T, Ishitani O (1997) Preparation and characterization of [Re(bpy)(CO)3L][SbF6] (L = phosphine, phosphite). J Organomet Chem 530:169–176

    Article  Google Scholar 

  6. Koike K, Hori H, Ishizuka M, Westwell JR, Takeuchi K, Ibusuki T, Enjouji K, Konno H, Sakamoto K, Ishitani O (1997) Key process of the photocatalytic reduction of CO2 using [Re(4,4-X2-bipyridine)(CO)3PR3]+ (X = CH3, H, CF3; PR3 = Phosphorus Ligands): dark reaction of the one-electron-reduced complexes with CO2. Organometallics 16:5724–5729

    Article  Google Scholar 

  7. Hori H, Johnson FPA, Koike K, Ishitani O, Ibusuki T (1996) Efficient photocatalytic CO2 reduction using [Re(bpy)(CO)3{P(OEt)3}]+. J Photochem Photobiol A Chem 96:171–174

    Article  Google Scholar 

  8. Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031

    Article  Google Scholar 

  9. Kutal C, Weber MA, Ferraudi G, Geiger D (1985) A mechanistic investigation of the photoinduced reduction of carbon dioxide mediated by tricarbonylbromo(2,2’-bipyridine)rhenium(I). Organometallics 4:2161–2166

    Article  Google Scholar 

  10. Kalyanasundaram K (1986) Luminescence and redox reactions of the metal-to-ligand charge-transfer excited state of tricarbonylchloro-(polypyridyl)rhenium(I) complexes. J Chem Soc Faraday Trans 2(82):2401–2415

    Article  Google Scholar 

  11. Kutal C, Corbin AJ, Ferraudi G (1987) Further studies of the photoinduced reduction of carbon dioxide mediated by tricarbonylbromo(2,2′-bipyridine)rhenium(I). Organometallics 6:553–557

    Article  Google Scholar 

  12. Smieja JM, Benson EE, Kumar B, Grice KA, Seu CS, Miller AJM, Mayer JM, Kubiak CP (2012) Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO. Proc Natl Acad Sci 109:15646–15650

    Article  Google Scholar 

  13. Smieja JM, Kubiak CP (2010) Re(bipy-tBu)(CO)3Cl−improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. Inorg Chem 49:9283–9289

    Article  Google Scholar 

  14. Hayashi Y, Kita S, Brunschwig BS, Fujita E (2003) Involvement of a binuclear species with the Re−C(O)O−Re moiety in CO2 reduction catalyzed by tricarbonyl rhenium(I) complexes with diimine ligands: strikingly slow formation of the Re−Re and Re−C(O)O−Re species from Re(dmb)(CO)3S (dmb = 4,4′-Dimethyl-2,2′-bipyridine, S = Solvent). J Am Chem Soc 125:11976–11987

    Article  Google Scholar 

  15. Agarwal J, Fujita E, Schaefer HF III, Muckerman JT (2012) Mechanisms for CO Production from CO2 using reduced rhenium tricarbonyl catalysts. J Am Chem Soc 134:5180–5186

    Article  Google Scholar 

  16. Lehn J-M, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci 79:701–704

    Article  Google Scholar 

  17. Morimoto T, Nakajima T, Sawa S, Nakanishi R, Imori D, Ishitani O (2013) CO2 capture by a rhenium(I) complex with the aid of triethanolamine. J Am Chem Soc 135:16825–16828

    Article  Google Scholar 

  18. Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: Rutheniu−rhenium Bi-and tetranuclear complexes. Inorg Chem 44:2326–2336

    Google Scholar 

  19. Tamaki Y, Morimoto T, Koike K, Ishitani O (2012) Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci 109:15673–15678

    Article  Google Scholar 

  20. Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2012) [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed 50:9903–9906

    Article  Google Scholar 

  21. Takeda H, Koizumi H, Okamoto K, Ishitani O (2014) Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem Commun 50:1491–1493

    Article  Google Scholar 

  22. Pullerits T, Sundström V (1996) Photosynthetic light-harvesting pigment-protein complexes: toward understanding how and why. Acc Chem Res 29:381–389

    Article  Google Scholar 

  23. Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827

    Article  Google Scholar 

  24. Takeda H, Ohashi M, Tani T, Ishitani O, Inagaki S (2010) Enhanced photocatalysis of rhenium(I) complex by light-harvesting periodic mesoporous organosilica. Inorg Chem 49:4554–4559

    Article  Google Scholar 

  25. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: History and recent developments. J Photochem Photobiol C: Reviews 12:237–268

    Google Scholar 

  26. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with methane over ZrO2. Chem Lett 993–994

    Google Scholar 

  27. Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113

    Article  Google Scholar 

  28. Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354

    Article  Google Scholar 

  29. Tsuneoka H, Teramura K, Shishido T, Tanaka T (2010) Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J Phys Chem C 114:8892–8898

    Article  Google Scholar 

  30. Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133:20863–20868

    Article  Google Scholar 

  31. Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2:306–314

    Article  Google Scholar 

  32. Hori Y, Wakabe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839

    Article  Google Scholar 

  33. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011

    Article  Google Scholar 

  34. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew Chem Int Ed 49:5101–5105

    Article  Google Scholar 

  35. Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO–. Organometallics 6:181–186

    Article  Google Scholar 

  36. Maeda K, Sekizawa K, Ishitani O (2013) A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem Commun 49:10127–10129

    Article  Google Scholar 

  37. Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O (2014) The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible light. J Mater Chem A 2:15146–15151

    Article  Google Scholar 

  38. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  39. Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K (2009) Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C 113:4940–4947

    Article  Google Scholar 

  40. Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49:441–444

    Article  Google Scholar 

  41. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew Chem Int Ed 45:4467–4471

    Article  Google Scholar 

  42. Sekizawa K, Maeda K, Koike K, Domen K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599

    Article  Google Scholar 

  43. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maeda, K. (2016). Photocatalytic Approach for CO2 Fixation. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics