Skip to main content

Are Peri-Urban Mangroves Vulnerable? An Assessment Through Litter Fall Studies

  • Chapter
  • First Online:
Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean

Abstract

The productivity of an over-exploited and sewage polluted peri-urban mangrove was assessed through litter fall studies to establish vulnerability to human actions and climate change. Litter from three common mangrove species, Rhizophora mucronata Lam. (Rhizophoraceae), Sonneratia alba Sm. (Sonneratiaceae), and Avicennia marina (Forssk.) Vierh. (Avicenniaceae) were monitored over a period of two years. The mean annual litter fall was estimated at 12.16 ± 2.89 t ha−1yr−1. Litter fall was seasonal in both content and quantity, with high rates occurring in the dry North Easterly Monsoon (NEM) season, January-April (ca. 5.10 ± 1.36 g DW m−2 day−1) and lower rates in the cool and wet South Easterly Monsoon (SEM) season, June-October (ca. 2.53 ± 0.47 g DW m−2 day−1). Litter fall varied significantly between species, R. mucronata recording the highest annual rate (15.34 ± 3.34 t ha−1yr−1), with no significant difference between A. marina and S. alba, (11.44 ± 2.90 and 9.69 ± 5.26 t ha−1yr−1 respectively). Sewage exposure did not affect litter fall rates for all species, but affected leaf nutrient content as expressed by the leaf δ15N signature. A strong correlation between leaf C:N ratio and leaf δ15N signature was observed, indicating a more open N cycle, favouring δ15N accumulation. Sewage exposure therefore does not necessarily translate into elevated productivity in mangroves, but causes alteration of leaf nutrient content depending on species. Prevailing climatic conditions however, may influence litter fall and thus phenology and health of the system. The vulnerability of the Tudor Creek mangroves to climate change may be ranked high due to low production (20%<) of reproductive materials and a die back of seaward fringe S. alba stand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi DM (1994) The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285(1–3):19–32

    Article  CAS  Google Scholar 

  • Alongi DM, Clough BF, Robertson AI (2005) Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquat Bot 82:121–131

    Article  Google Scholar 

  • Benner R, Hodson RE (1985) Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Ma Ecol Prog Ser 23(3):221–230

    Article  CAS  Google Scholar 

  • Boto KG, Wellington JT (1983) Phosphorus and nitrogen nutritional status of a Northern Australian mangrove forest. Mar Ecol Prog Ser 11(1):63–69

    Article  Google Scholar 

  • Bouillon S, Raman AV, Dauby P, Dehairs F (2002) Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci 54:901–913

    Article  CAS  Google Scholar 

  • Bouillon S, Moens T, Koedam N, Dahdouh-Guebas F, Baeyens W, Dehairs F (2004a) Variability in the origin of carbon substrates for bacterial communities in mangrove sediments. FEMS Microbiol Ecol 49(2):171–179

    Article  CAS  Google Scholar 

  • Bouillon S, Moens T, Overmeer I, Koedam N, Dehairs F (2004b) Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Mar Ecol Prog Ser 278:77–88

    Article  CAS  Google Scholar 

  • Bouillon S, Middelburg JJ, Dehairs F, Borges AV, Abril G, Flindt MR, Ulomi S, Kristensen E (2007a) Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove Creek (Ras Dege, Tanzania). Biogeosciences 4(3):311–322

    Article  CAS  Google Scholar 

  • Bouillon S, Dehairs F, Velimirov B, Abril G, Borges AV (2007b) Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). J Geophys Res Biogeosci 112(G02018)

    Google Scholar 

  • Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59(1–2):44–58

    Article  CAS  Google Scholar 

  • Bunt JS (1995) Continental scale patterns in mangrove litter fall. Hydrobiologia 295(1–3):135–140

    Article  Google Scholar 

  • Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci U S A 93(20):10844–10847

    Article  CAS  Google Scholar 

  • Chansang H, Poovachiranon S (1985) Fate of mangrove litter in a mangrove forest at Ko Yao Yai, southern Thailand. Estuaries 8: 106A

    Google Scholar 

  • Chen L, Zan Q, Li M, Shen J, Liao W (2009) Litter dynamics and forest structure of the introduced Sonneratia caseolaris mangrove forest in Shenzhen, China. Estuar Coast Shelf Sci 85(2):241–246

    Article  Google Scholar 

  • Chu HY, Chen NC, Yeung MC, Tam NFY, Wong YS (1998) Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater. Water Sci Technol 38(1):361–368

    Article  CAS  Google Scholar 

  • Clarke PJ (1994) Base-line studies of temperate mangrove growth and reproduction demographic and litter fall measures of leafing and flowering. Aust J Bot 42(1):37–48

    Article  Google Scholar 

  • Clough BF, Boto KG, Attiwill PM (1983) Mangrove and sewage: a re-evaluation. In: Teas HJ (ed) Biology and ecology of mangroves, vol 8, Tasks for vegetation science series. Dr W. Junk Publishers, Lancaster, pp 151–162

    Chapter  Google Scholar 

  • Conacher CA, Obrien C, Horrocks JL, Kenyon RK (1996) Litter production and accumulation in stressed mangrove communities in the Embley River Estuary, north-eastern Gulf of Carpentaria, Australia. Mar Freshw Res 47(5):737–743

    Article  Google Scholar 

  • Costanzo SD, O’Donohue MJ, Dennison WC (2003) Assessing the seasonal influence of sewage and agricultural nutrient inputs in a subtropical river estuary. Estuaries 26(4A):857–865

    Article  Google Scholar 

  • Day JW Jr, Conner WH, Ley-Lou F, Day RH, Navarro AM (1987) The productivity and composition of mangrove forests, Languna de Terminos. Mexico Aquat Bot 27:267–284

    Article  Google Scholar 

  • Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycles 20. GB1012

    Google Scholar 

  • Duke NC (1990) Phenological trends with latitude in the mangrove tree Avicennia marina. J Ecol 78(1):113–133

    Article  Google Scholar 

  • Duke NC, Bunt JS, Williams WT (1981) Mangrove litter fall in Northeastern Australia. 1. Annual totals by component in selected species. Aust J Bot 29(5):547–553

    Article  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  CAS  Google Scholar 

  • Ellis WL, Bell SS (2004) Canopy gaps formed by mangrove trimming: an experimental test of impact on litter fall and standing litter stock in Southwest Florida (USA). J Exp Mar Biol Ecol 311:201–222

    Article  Google Scholar 

  • Ellis WL, Bowles JW, Erickson AA, Stafford N, Bell SS, Thomas M (2006) Alteration of the chemical composition of mangrove (Laguncularia racemosa) leaf litter fall by freeze damage. Estuar Coast Shelf Sci 68(1–2):363–371

    Article  CAS  Google Scholar 

  • Ellison JC (2012) Climate change vulnerability assessment and adaptation planning for mangrove systems. World Wildlife Fund (WWF), Washington, DC

    Google Scholar 

  • Eusse AM, Aide TM (1999) Patterns of litter production across a salinity gradient in a Pterocarpus officinalis tropical wetland. Plan Ecol 145(2):307–315

    Article  Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65(4):477–505

    Article  Google Scholar 

  • Feller IC, Whigham DF, O’Neill JP, McKee KL (1999) Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80(7):2193–2205

    Article  Google Scholar 

  • Feller IC, McKee KL, Whigham DF, O’Neill JP (2003a) Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 00:1–31

    Google Scholar 

  • Feller IC, Whigham DF, McKee KL, Lovelock CE (2003b) Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia 134(3):405–414

    Article  Google Scholar 

  • Flores-Verdugo FJ, Gonzalez-Farias F, Ramirez-Flores O, Amezcua-Linares F, Yañez-Arancibia A, Alvarez-Rubio M, Day JW Jr (1990) Mangrove ecology, aquatic primary productivity, and fish community dynamics in the Teacapán-Agua Brava lagoon-estuarine system (Mexican Pacific). Estuaries 13:219–230

    Article  Google Scholar 

  • Fortes MD (1988) Mangrove and seagrass beds of East-Asia-Habitats under stress. Ambio 17(3):207–213

    Google Scholar 

  • Fry B, Bern AL, Ross MS, Meeder JF (2000) δ15N Studies of nitrogen use by the red mangrove, Rhizophora mangle L. in South Florida. Estuar Coast Shelf Sci 50(2):291–296

    Article  CAS  Google Scholar 

  • Gong WK, Ong JE (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar Coast Shelf Sci 31(5):519–530

    Article  CAS  Google Scholar 

  • Henley DA (1978) An investigation of proposed effluent discharge into a tropical mangrove estuary. In: Proceeding of international conference on Water Pollution Control in Developing Countries. September 1978, Thailand, pp 43–64

    Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33(4):265–278

    Article  CAS  Google Scholar 

  • Kairo JG (2001) Ecology and restoration of mangrove systems in Kenya. Laboratory of General Botany and Nature Management (APNA). Free University of Brussels, Belgium

    Google Scholar 

  • Koch MS, Snedaker SC (1997) Factors influencing Rhizophora mangle L. seedling development in Everglades carbonate soils. Aquat Bot 59(1–2):87–98

    Article  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SM, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219

    Article  CAS  Google Scholar 

  • Lee SY (1998) Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar Freshw Res 49(4):335–343

    Article  Google Scholar 

  • Li MS (1997) Nutrient dynamics of a Futian mangrove forest in Shenzhen, South China. Estuar Coast Shelf Sci 45(4):463–472

    Article  CAS  Google Scholar 

  • Lieth H, Berlekamp J, Fuest S, Riediger S (1999) Climate diagrams of the world, CD-series: climate and biosphere. Blackhuys Publishers, Leiden

    Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Mackey AP, Smail G (1995) Spatial and temporal variation in litter fall of Avicennia marina (Forssk.) Vierh in the Brisbane-River, Queensland, Australia. Aquat Bot 52(1–2):133–142

    Article  Google Scholar 

  • McKee KL, Feller IC, Popp M, Wanek W (2002) Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83(4):1065–1075

    Google Scholar 

  • Marguillier S, vander Velde G, Dehairs F, Hemminga MA, Rajagopal S (1997) Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by δ13C and δ15N. Mar Ecol Prog Ser 151(1–3):115–121

    Article  CAS  Google Scholar 

  • Mohamed MOS, Neukermans G, Kairo JG, Dahdouh-Guebas F, Koedam N (2009) Mangrove forests in a peri-urban setting: the case of Mombasa (Kenya). Wetl Ecol Manage 17:243–255

    Article  Google Scholar 

  • Muzuka ANN, Shunula JP (2006) Stable isotope compositions of organic carbon and nitrogen of two mangrove stands along the Tanzanian coastal zone. Estuar Coast Shelf Sci 66(3–4):447–458

    Article  CAS  Google Scholar 

  • Mwaguni S, Munga D (1997) Land based sources and activities affecting the quality and uses of the marine coastal and associated freshwater environments along the Kenya coast. Coastal Development Authority, Mombasa

    Google Scholar 

  • Mwangi S, Kirugara D, Osore M, Njoya J, Yobe A, Dzeha T (1999) Status of marine pollution in Mombasa Marine Park and Reserve and Mtwapa Creek. A technical report. Kenya Marine and Fisheries Research Institute, Government Chemist Department, Kenya Wildlife Service, Mombasa

    Google Scholar 

  • Nagelkerken I, Blaber S, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marina fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  • Nga BT, Tinh HQ, Tam DT, Scheffer M, Roijackers R (2005) Young mangrove stands produce a large and high quality litter input to aquatic systems. Wetl Ecol Manage 13:569–576

    Article  Google Scholar 

  • Nguli MM (2006) Water exchange and circulation in selected Kenyan Creeks. PhD dissertation, Earth Science Centre, Goteborg University, C78 2006

    Google Scholar 

  • O’Neill RV, DeAngelis DL (1981) Comparative productivity and biomass relationships of forest ecosystems. In: Reichle DE (eds) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 411–450

    Google Scholar 

  • Ochieng CA, Erftemeijer PLA (2002) Phenology, litter fall and nutrient resorption in Avicennia marina (Forsk.) Vierh in Gazi Bay, Kenya. Trees 16:167–171

    Article  CAS  Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic analyses of an estuarine mangrove community. Bull Mar Sci 22(3):671

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pp

    Google Scholar 

  • Pennock JR, Velinsky DJ, Ludlam JM, Sharp JH, Fogel ML (1996) Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: implications for δ15N dynamics under bloom conditions. Limnol Oceanogr 41:451–459

    Article  CAS  Google Scholar 

  • Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove morests in Florida, Puerto-Rico, Mexico, and Costa-Rica. BIOTR 9(3):195–212

    Article  Google Scholar 

  • PUMPSEA (2007) D5 – geographical differentiation of biogeochemical transformations in mangrove compartments exposed to selected sewage doses and compositions. Biological Institute from Southern Denmark University, Report for the Project: Peri-urban mangrove forests as filters and potential phytoremediators of domestic sewage in East Africa project. http://www.pumpsea.icat.fc.ul.pt/restricted.php

  • Rao RG, Woitchik AF, Goeyens L, van Riet A, Kazungu J, Dehairs F (1994) Carbon, nitrogen contents and stable carbon isotope abundance in mangrove leaves from an East African coastal lagoon (Kenya). Aquat Bot 47(2):175–183

    Article  Google Scholar 

  • Sasekumar A, Loi JJ (1983) Litter production in 3 mangrove forest zones in the Malay Peninsula. Aquat Bot 17(3–4):283–290

    Article  Google Scholar 

  • Saenger P, Snedaker SC (1993) Pantropical trends in mangrove aboveground biomass and annual litter fall. Oecologia 96(3):293–299

    Article  Google Scholar 

  • Slim FJ, Gwada PM, Kodjo M, Hemminga MA (1996) Biomass and litter fall of Ceriops tagal and Rhizophora mucronata in the mangrove forest of Gazi Bay, Kenya. Mar Freshw Res 47(8):999–1007

    Article  Google Scholar 

  • SPEK (1992) Mangrove forest of Mombasa. Technical Report by Society for Protection of Environment, Kenya

    Google Scholar 

  • Steinke TD, Ward CJ (1990) Litter production by mangroves: III. Wavecrest (Transkei) with predictions for other Transkei Estuaries. S Afr J Bot 56(5):514–519

    Article  Google Scholar 

  • Tam NFY, Wong YS, Lan CY, Wang LN (1998) Litter production and decomposition in a subtropical mangrove swamp receiving wastewater. J Exp Mar Biol Ecol 226(1):1–18

    Article  Google Scholar 

  • Twilley RR, Lugo AE, Pattersonzucca C (1986) Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology 67(3):670–683

    Article  Google Scholar 

  • Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Poll 64(1–2):265–288

    Article  CAS  Google Scholar 

  • UNEP/GPA (2001) Consultative meeting on municipal wastewater. Eastern Africa. Dar es Salaam, Tanzania, June 11–15 2001. UNEP, Eastern Afrian Action Plan/Regional coordinating unit, The Hague

    Google Scholar 

  • UNEP-WCMC (2006) In the front line: shoreline protection and other ecosystem services from mangroves and coral reefs. UNEP-WCMC, Cambridge, 33 pp

    Google Scholar 

  • Wafar S, Untawale AG, Wafar M (1997) Litter fall and energy flux in a mangrove ecosystem. Estuar Coast Shelf Sci 44(1):111–124

    Article  Google Scholar 

  • Walters BB, Rönnbäck P, Kovacs J, Crona B, Hussain S, Badola R, Primavera JH, Barbier EB, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and adaptive management of mangroves: a review. Aquat Bot 89:220–236

    Article  Google Scholar 

  • Wanek W, Hofmann J, Feller IC (2007) Canopy interactions of rainfall in an off-shore mangrove ecosystem dominated by Rhizophora mangle (Belize). J Hydrol 345:70–79

    Article  Google Scholar 

  • Woodroffe CD (1985) Studies of a mangrove basin, Tuff Crater, New-Zealand.1. Mangrove biomass and production of detritus. Estuar Coast Shelf Sci 20(3):265–280

    Article  Google Scholar 

  • Ye Y, Tam NFY, Wong YS (2001) Livestock wastewater treatment by a mangrove pot-cultivation system and the effect of salinity on the nutrient removal efficiency. Mar Pollut Bull 42(6):513–521

    Article  CAS  Google Scholar 

  • Yoneyama T, Omata T, Nakata S, Yazaki J (1991) Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia by plants. Plant Cell Physiol 32:1211–1217

    CAS  Google Scholar 

Download references

Acknowledgements

We express our appreciation to the local communities for their support in the sampling campaigns, and colleagues at KMFRI and KWS Coast Region Research station. The work described in this thesis was supported by a PhD. Scholarship from the Flemish Interuniversity Council (VLIR) in Belgium and the EU funded PUMPSEA project (FP6 – INCO contract no. 510863). Further reanalysis of the data was done through funding from WIOMSA MASMA funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Omar Said Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohamed, M.O.S., Mangion, P., Mwangi, S., Kairo, J.G., Dahdouh-Guebas, F., Koedam, N. (2016). Are Peri-Urban Mangroves Vulnerable? An Assessment Through Litter Fall Studies. In: Diop, S., Scheren, P., Ferdinand Machiwa, J. (eds) Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean. Estuaries of the World. Springer, Cham. https://doi.org/10.1007/978-3-319-25370-1_3

Download citation

Publish with us

Policies and ethics