Skip to main content

Structural and Optical Properties of Tungsten Oxide Based Thin Films and Nanofibers

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Tungsten oxide nanomaterials confined to one and two dimensions can be prepared with tungsten metal powder, tungsten chloride, peroxotungstic acid and acetylated peroxotungstic acid precursors by sol-gel, evaporation and electrodeposition techniques. Nanofibers and nanowires of tungsten oxide are synthesized by organic/inorganic blend of tungsten hexachloride, tungsten metal powder and polyvinylpyrrolidone with electrospinning technique. Standard and mesoporous tungsten oxide thin films are prepared from an ethanolic solution of tungsten hexachloride. Several polymers were employed as a template to generate the mesoporous structure. Additionally a detailed systematic study of the evaporated tungsten oxide thin films has been carried out at progressively increasing temperatures. Overall, the optical, electrochemical and structural properties of the deposited films were examined in both liquid and solid electrolytes. All solid electrochromic devices were fabricated using tungsten oxide active electrochromic layers. The fabrication and evaluation of a prototype solid-state electrochromic device are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Chi, Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sensors and Actuators B: Chemical 194, 33–37 (2014)

    Article  Google Scholar 

  2. S. Novak, Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of porcellio scaber. Am. Chem. Soc. 47, 11284–11292 (2013)

    Google Scholar 

  3. J. Lee, Simple fabrication of flexible electrodes with high metal-oxide content electrospun reduced tungsten oxidecarbon nanofibers for lithium ion battery applications. Nanoscale 6, 10147–10155 (2014)

    Article  ADS  Google Scholar 

  4. W. Li, Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Appl. Surf. Sci. 256, 2447–2452 (2010)

    Article  ADS  Google Scholar 

  5. S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260–4267 (2014)

    Article  Google Scholar 

  6. Y. Qin, Nanowire (nanorod) arrays-constructed tungsten oxide hierarchical structure and its unique NO2-sensing performances. J. Alloys Compd. 615, 616–623 (2014)

    Article  Google Scholar 

  7. T.A. Nguyen, S. Park, J.B. Kim, T.K. Kim, G.H. Seong, J. Choo, Y.S. Kim, Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sens. Actuators B: Chem. 160(1), 549–554 (2011)

    Article  Google Scholar 

  8. C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, Structural stability and phase transitions in WO3 thin films. J Phys. Chem. B 110, 10430–10435 (2006)

    Article  Google Scholar 

  9. X. Chang, S. Shibin, Z. Li, X. Xu, Y. Qiu, Assembly of tungsten oxide nanobundles and their electrochromic properties. Elsevier, Appl. Surf. Sci. 257, 5726–5730 (2011)

    Article  ADS  Google Scholar 

  10. J. Sungpanich, Fabrication of WO3 nanofibers by high voltage electrospinning. Mater. Lett. 65, 3000–3004 (2011)

    Article  Google Scholar 

  11. k Bange, Colouration of tungsten oxide films: a model for optically active coatings. Elsevier, Solar Energy Mater. Solar Cells 58, 1–131 (1999)

    Article  Google Scholar 

  12. E.K.H. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, T. Herrmannsdorfer, M.T. Dove, Crystal structure and paramagnetic behaviour of e-WO3–x. J. Phys.: Condens. Matter 9, 6563–6577 (1997)

    ADS  Google Scholar 

  13. R. Chatten, A.V. Chadwick, A. Rougier, P.J.D. Lindan, The Oxygen Vacancy in Crystal Phases of WO3. J Phys. Chem. B 109, 3146–3156 (2005)

    Article  Google Scholar 

  14. M.H. Kim, H.W. Choi, K.H. Kim, Properties of WO3–x electrochromic thin film prepared by reactive sputtering with various post annealing temperatures. IOP Jpn. Soc. Appl. Phys. 52, 11 (2013)

    Google Scholar 

  15. H. Miyazaki, Electrical and optical properties of amorphous and crystalline nondoped WO3–x films prepared by reactive RF sputtering. J. Appl. Phys. 47(9), 7295–7297 (2008)

    Article  Google Scholar 

  16. E. Ozkan, S.H. Lee, P. Liu, C.E. Tracy, F.Z. Tepehan, J.R. Pitts, S.K. Deb, Electrochromic and optical properties of mesoporous tungsten oxide films. J. Solid State Ionics 149, 139–146 (2002)

    Article  Google Scholar 

  17. R. Vittal, H. Gomathi, K.J. Kim, Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv. Colloid Interface Sci. 119(1), 55–68 (2006)

    Article  Google Scholar 

  18. W. Cheng, Y. Ju, P. Payamyar, D. Primc, J. Rao, C. Willa, M. Niederberger, Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing. Angew. Chem. Int. Ed. 54(1), 340–344 (2015)

    Article  Google Scholar 

  19. X. Chi, C. Liu, L. Liu, Y. Li, Z. Wang, X. Bo, C. Su, Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sens. Actuators B: Chem. 194, 33–37 (2014)

    Article  Google Scholar 

  20. P.V. Tong, N.D. Hoa, N.V. Duy, N.V. Hieu, Micro-wheels composed of self-assembled tungsten oxide nanorods for highly sensitive detection of low level toxic chlorine gas. RSC Advances 5(32), 25204–25207 (2015)

    Article  ADS  Google Scholar 

  21. M. Ahmadi, S. Sahoo, R. Younesi, A.P. Gaur, R.S. Katiyar, M.J. Guinel, WO3 nano-ribbons: their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3). J. Mater. Sci. 49(17), 5899–5909 (2014)

    Article  ADS  Google Scholar 

  22. S. Salmaoui, F. Sediri, N. Gharbi, Characterization of h-WO3 nanorods synthesized by hydrothermal process. Polyhedron 29(7), 1771–1775 (2010)

    Article  Google Scholar 

  23. G. Gu, B. Zheng, W.Q. Han, S. Roth, J. Liu, Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2(8), 849–851 (2002)

    Article  ADS  Google Scholar 

  24. T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel, D. Vernardou, Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide. Chem. Mater. 16(4), 744–749 (2004)

    Article  Google Scholar 

  25. H. Hassani, E. Marzbanrad, C. Zamani, B. Raissi, Effect of hydrothermal duration on synthesis of WO3 nanorods. J. Mater. Sci.: Mater. Electron. 22(9), 1264–1268 (2011)

    Google Scholar 

  26. R. Sahay, V. Thavasi, S. Ramakrishna, Design modifications in electrospinning setup for advanced applications. J. Nanomater. 17 (2011)

    Google Scholar 

  27. J. Díaz-Reyes, V. Dorantes-García, A. Pérez-Benítez, J.A. Balderas-López, Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament. Superficies Vacio 21(2), 12–17 (2008)

    Google Scholar 

  28. S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 92(2), 245–258 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Zayim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zayim, E.O., Tabatabaei Mohseni, A. (2016). Structural and Optical Properties of Tungsten Oxide Based Thin Films and Nanofibers. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_12

Download citation

Publish with us

Policies and ethics