Skip to main content

Translational Control in the Germ Line

  • Chapter
  • First Online:
Post-transcriptional Mechanisms in Endocrine Regulation

Abstract

Germ cells are unique cells with the essential function of transmitting geneticinformation to the progeny. They are highly specialized cells that maintain some ofthe properties of a pluripotent cell being able to reprogram to totipotency togenerate a zygote. Given these unique functions, they often use unusual strategies tocontrol their development. One such property is the extensive use of translationalcontrol to regulate gene expression during transcriptionally quiescent periods. Toaccomplish this, they have developed elaborate mechanisms of mRNA repression,transport, and translation that are highly conserved throughout evolution.Conserved families of RNA binding proteins mediate these regulations. In thischapter, we will review some of the components of these regulatory circuits. We willbriefly describe some of these components and their function during gametogenesisin model organisms. We will then review the mechanisms of regulation oftranslation during mammalian oogenesis and spermatogenesis and the RNA bindingproteins involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andresson T, Ruderman JV (1998) The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J 17(19):5627–5637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bally-Cuif L, Schatz WJ, Ho RK (1998) Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech Dev 77(1):31–47

    CAS  PubMed  Google Scholar 

  • Barnard DC, Ryan K, Manley JL, Richter JD (2004) Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119(5):641–651

    CAS  PubMed  Google Scholar 

  • Barnard DC, Cao Q, Richter JD (2005) Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol 25(17):7605–7615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrios F, Filipponi D, Pellegrini M, Paronetto MP, Di Siena S, Geremia R, Rossi P, De Felici M, Jannini EA, Dolci S (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123(Pt 6):871–880

    CAS  PubMed  Google Scholar 

  • Barton MK, Kimble J (1990) fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics 125(1):29–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belloc E, Mendez R (2008) A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452(7190):1017–1021

    CAS  PubMed  Google Scholar 

  • Bettegowda A, Wilkinson MF (2010) Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365(1546):1637–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bielawski JP, Yang Z (2001) Positive and negative selection in the DAZ gene family. Mol Biol Evol 18(4):523–529

    CAS  PubMed  Google Scholar 

  • Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, Debey P (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 60(3):580–587

    CAS  PubMed  Google Scholar 

  • Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600

    CAS  PubMed  Google Scholar 

  • Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28(1):10–12

    CAS  PubMed  Google Scholar 

  • Braun RE, Peschon JJ, Behringer RR, Brinster RL, Palmiter RD (1989) Protamine 3′-untranslated sequences regulate temporal translational control and subcellular localization of growth hormone in spermatids of transgenic mice. Genes Dev 3(6):793–802

    CAS  PubMed  Google Scholar 

  • Brook M, Smith JW, Gray NK (2009) The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 137(4):595–617

    CAS  PubMed  Google Scholar 

  • Brownlie A, Hersey C, Oates AC, Paw BH, Falick AM, Witkowska HE, Flint J, Higgs D, Jessen J, Bahary N, Zhu H, Lin S, Zon L (2003) Characterization of embryonic globin genes of the zebrafish. Dev Biol 255(1):48–61

    CAS  PubMed  Google Scholar 

  • Campbell ZT, Menichelli E, Friend K, Wu J, Kimble J, Williamson JR, Wickens M (2012) Identification of a conserved interface between PUF and CPEB proteins. J Biol Chem 287(22):18854–18862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalupnikova K, Solc P, Sulimenko V, Sedlacek R, Svoboda P (2014) An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically competent antral oocytes. Cell Cycle 13(7):1187–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth A, Ridge JA, King LA, MacNicol MC, MacNicol AM (2002) A novel regulatory element determines the timing of Mos mRNA translation during Xenopus oocyte maturation. EMBO J 21(11):2798–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth A, Wilczynska A, Thampi P, Cox LL, MacNicol AM (2006) Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 25(12):2792–2801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth A, Yamamoto TM, Cook JM, Silva KD, Kotter CV, Carter GS, Holt JW, Lavender HF, MacNicol AM, Ying Wang Y, Wilczynska A (2012) Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation. Dev Biol 369(2):177–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth A, Meijer HA, de Moor CH (2013) Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip Rev RNA 4(4):437–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Ma M, Li L, Zhang S, Su D, Ma Y, Liu Y, Tao D, Lin L, Yang Y (2010) Phenotypic expression of partial AZFc deletions is independent of the variations in DAZL and BOULE in a Han population. J Androl 31(2):163–168

    PubMed  Google Scholar 

  • Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M (2011a) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 25(7):755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Wang S, Xie T (2011b) Restricting self-renewal signals within the stem cell niche: multiple levels of control. Curr Opin Genet Dev 21(6):684–689

    CAS  PubMed  Google Scholar 

  • Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H (2012) Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. Curr Biol 22(5):420–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Torcia S, Xie F, Lin CJ, Cakmak H, Franciosi F, Horner K, Onodera C, Song JS, Cedars MI, Ramalho-Santos M, Conti M (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15(12):1415–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung LS, Schupbach T, Shvartsman SY (2011) Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis. Curr Opin Genet Dev 21(6):719–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury R, Roy SG, Tsai YS, Tripathy A, Graves LM, Wang Z (2014) The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration. Nat Commun 5:3078

    PubMed  Google Scholar 

  • Christerson LB, McKearin DM (1994) orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev 8(5):614–628

    Google Scholar 

  • Clarke HJ (2012) Post-transcriptional control of gene expression during mouse oogenesis. Results Probl Cell Differ 55:1–21

    CAS  PubMed  Google Scholar 

  • Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK (2005) The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 24(14):2656–2666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conti M, Hsieh M, Park JY, Su YQ (2006) Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol 20(4):715–723

    CAS  PubMed  Google Scholar 

  • Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417(6889):660–663

    CAS  PubMed  Google Scholar 

  • Dai T, Vera Y, Salido EC, Yen PH (2001) Characterization of the mouse Dazap1 gene encoding an RNA-binding protein that interacts with infertility factors DAZ and DAZL. BMC Genomics 2:6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Miranda G, Mendez R (2012) The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 11(4):460–472

    CAS  PubMed  Google Scholar 

  • Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J (2012) A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Nat Struct Mol Biol 19(2):176–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller MT (1998) Genetic control of cell proliferation and differentiation in Drosophila spermatogenesis. Semin Cell Dev Biol 9(4):433–444

    CAS  PubMed  Google Scholar 

  • Garcia TX, Farmaha JK, Kow S, Hofmann MC (2014) RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development 141(23):4468–4478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebauer F, Richter JD (1996) Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc Natl Acad Sci U S A 93(25):14602–14607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Marchand V, Gaspar I, Ephrussi A (2012) Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol 19(4):441–449

    CAS  PubMed  Google Scholar 

  • Gill ME, Hu YC, Lin Y, Page DC (2011) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci U S A 108(18):7443–7448

    Google Scholar 

  • Gillian-Daniel DL, Gray NK, Astrom J, Barkoff A, Wickens M (1998) Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol Cell Biol 18(10):6152–6163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstrohm AC, Hook BA, Seay DJ, Wickens M (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13(6):533–539

    CAS  PubMed  Google Scholar 

  • Gonczy P, Matunis E, DiNardo S (1997) Bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis. Development 124(21):4361–4371

    CAS  PubMed  Google Scholar 

  • Gunter KM, McLaughlin EA (2011) Translational control in germ cell development: a role for the RNA-binding proteins Musashi-1 and Musashi-2. IUBMB Life 63(9):678–685

    CAS  PubMed  Google Scholar 

  • Hashimoto N, Kishimoto T (1988) Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev Biol 126(2):242–252

    CAS  PubMed  Google Scholar 

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2009) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73(4):241–278

    Google Scholar 

  • Huarte J, Stutz A, O’Connell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli JD (1992) Transient translational silencing by reversible mRNA deadenylation. Cell 69(6):1021–1030

    CAS  PubMed  Google Scholar 

  • Idler RK, Yan W (2012) Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl 33(3):309–337

    CAS  PubMed  Google Scholar 

  • Igea A, Mendez R (2010) Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J 29(13):2182–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivshina M, Lasko P, Richter JD (2014) Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol 30:393–415

    CAS  PubMed  Google Scholar 

  • Jenkins HT, Malkova B, Edwards TA (2011) Kinked beta-strands mediate high-affinity recognition of mRNA targets by the germ-cell regulator DAZL. Proc Natl Acad Sci U S A 108(45):18266–18271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao X, Trifillis P, Kiledjian M (2002) Identification of target messenger RNA substrates for the murine deleted in azoospermia-like RNA-binding protein. Biol Reprod 66(2):475–485

    CAS  PubMed  Google Scholar 

  • Karashima T, Sugimoto A, Yamamoto M (2000) Caenorhabditis elegans homologue of the human azoospermia factor DAZ is required for oogenesis but not for spermatogenesis. Development 127(5):1069–1079

    CAS  PubMed  Google Scholar 

  • Kim JH, Richter JD (2006) Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24(2):173–183

    CAS  PubMed  Google Scholar 

  • Kim JH, Richter JD (2007) RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev 21(20):2571–2579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Lee YC, Kim C (2010) Direct inhibition of Pumilio activity by Bam and Bgcn in Drosophila germ line stem cell differentiation. J Biol Chem 285(7):4741–4746

    Google Scholar 

  • Kim B, Cooke HJ, Rhee K (2012) DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress. Development 139(3):568–578

    CAS  PubMed  Google Scholar 

  • Kimble J (2011) Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol 3(8):a002683

    PubMed  PubMed Central  Google Scholar 

  • Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433

    CAS  PubMed  Google Scholar 

  • Kimble J, Simpson P (1997) The LIN-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 13:333–361

    CAS  PubMed  Google Scholar 

  • Kotani T, Yasuda K, Ota R, Yamashita M (2013) Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules. J Cell Biol 202(7):1041–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018

    CAS  PubMed  Google Scholar 

  • Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 3(1):15–28

    CAS  PubMed  Google Scholar 

  • Kurihara Y, Watanabe H, Kawaguchi A, Hori T, Mishiro K, Ono M, Sawada H, Uesugi S (2004) Dynamic changes in intranuclear and subcellular localizations of mouse Prrp/DAZAP1 during spermatogenesis: the necessity of the C-terminal proline-rich region for nuclear import and localization. Arch Histol Cytol 67(4):325–333

    CAS  PubMed  Google Scholar 

  • Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P (1994) The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev 8(5):598–613

    CAS  PubMed  Google Scholar 

  • Latham KE (1999) Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 193:71–124

    CAS  PubMed  Google Scholar 

  • Lee KH, Lee S, Kim B, Chang S, Kim SW, Paick JS, Rhee K (2006) Dazl can bind to dynein motor complex and may play a role in transport of specific mRNAs. EMBO J 25(18):4263–4270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137(6):859–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Minor NT, Park JK, McKearin DM, Maines JZ (2009) Bam and Bgcn antagonize Nanos-dependent germ-line cell maintenance. Proc Natl Acad Sci U S A 106(23):9304–9309

    Google Scholar 

  • Li Y, Zhang Q, Carreira-Rosario A, Maines JZ, McKearin DM, Buszczak M (2013) Mei-p26 cooperates with Bam, Bgcn and Sxl to promote early germline development in the Drosophila ovary. PLoS One 8(3), e58301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Page DC (2005) Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev Biol 288(2):309–316

    CAS  PubMed  Google Scholar 

  • Lin H, Spradling AC (1993) Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev Biol 159(1):140–152

    CAS  PubMed  Google Scholar 

  • Lin YT, Yen PH (2006) A novel nucleocytoplasmic shuttling sequence of DAZAP1, a testis-abundant RNA-binding protein. RNA 12(8):1486–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Taylor SJ, Shalloway D (1997) Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J Biol Chem 272(43):27274–27280

    CAS  PubMed  Google Scholar 

  • Liu H, Aoki F (2002) Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. Zygote 10(4):327–332

    CAS  PubMed  Google Scholar 

  • Lolicato F, Marino R, Paronetto MP, Pellegrini M, Dolci S, Geremia R, Grimaldi P (2008) Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Dev Biol 313(2):725–738

    CAS  PubMed  Google Scholar 

  • Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M (2000) CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 14(20):2596–2609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Flemr M, Strnad H, Svoboda P, Schultz RM (2013) Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod 88(1):11

    PubMed  Google Scholar 

  • MacNicol MC, Cragle CE, MacNicol AM (2011) Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation. Cell Cycle 10(1):39–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marin VA, Evans TC (2003) Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130(12):2623–2632

    CAS  PubMed  Google Scholar 

  • Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B (2007) hnRNP proteins and splicing control. Adv Exp Med Biol 623:123–147

    PubMed  Google Scholar 

  • Maruyama R, Endo S, Sugimoto A, Yamamoto M (2005) Caenorhabditis elegans DAZ-1 is expressed in proliferating germ cells and directs proper nuclear organization and cytoplasmic core formation during oogenesis. Dev Biol 277(1):142–154

    CAS  PubMed  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3(6):803–815

    CAS  PubMed  Google Scholar 

  • Medvedev S, Yang J, Hecht NB, Schultz RM (2008) CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. Dev Biol 321(1):205–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev S, Pan H, Schultz RM (2011) Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, RNA stability, and the transcriptome. Biol Reprod 85(3):575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD (2000a) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404(6775):302–307

    CAS  PubMed  Google Scholar 

  • Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD (2000b) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6(5):1253–1259

    CAS  PubMed  Google Scholar 

  • Miller MA, Olivas WM (2011) Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2(4):471–492

    CAS  PubMed  Google Scholar 

  • Minshall N, Reiter MH, Weil D, Standart N (2007) CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 282(52):37389–37401

    CAS  PubMed  Google Scholar 

  • Najib S, Martin-Romero C, Gonzalez-Yanes C, Sanchez-Margalet V (2005) Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci 62(1):36–43

    CAS  PubMed  Google Scholar 

  • O’Connell ML, Cavallo WC Jr, Firnberg M (2014) The expression of CPEB proteins is sequentially regulated during zebrafish oogenesis and embryogenesis. Mol Reprod Dev 81(4):376–387

    PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ota R, Kotani T, Yamashita M (2011) Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes. J Biol Chem 286(4):2853–2863

    CAS  PubMed  Google Scholar 

  • Padmanabhan K, Richter JD (2006) Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev 20(2):199–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan H, O’Brien MJ, Wigglesworth K, Eppig JJ, Schultz RM (2005) Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev Biol 286(2):493–506

    CAS  PubMed  Google Scholar 

  • Paronetto MP, Sette C (2010) Role of RNA-binding proteins in mammalian spermatogenesis. Int J Androl 33(1):2–12

    CAS  PubMed  Google Scholar 

  • Paronetto MP, Messina V, Bianchi E, Barchi M, Vogel G, Moretti C, Palombi F, Stefanini M, Geremia R, Richard S, Sette C (2009) Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol 185(2):235–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfender S, Kuznetsov V, Pasternak M, Tischer T, Santhanam B, Schuh M (2015) Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature 524(7564):239–242

    Google Scholar 

  • Pique M, Lopez JM, Foissac S, Guigo R, Mendez R (2008) A combinatorial code for CPE-mediated translational control. Cell 132(3):434–448

    CAS  PubMed  Google Scholar 

  • Potireddy S, Vassena R, Patel BG, Latham KE (2006) Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Dev Biol 298(1):155–166

    CAS  PubMed  Google Scholar 

  • Quenault T, Lithgow T, Traven A (2011) PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21(2):104–112

    CAS  PubMed  Google Scholar 

  • Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O et al (1995) Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 10(4):383–393

    CAS  PubMed  Google Scholar 

  • Reynolds N, Collier B, Maratou K, Bingham V, Speed RM, Taggart M, Semple CA, Gray NK, Cooke HJ (2005) Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet 14(24):3899–3909

    CAS  PubMed  Google Scholar 

  • Reynolds N, Collier B, Bingham V, Gray NK, Cooke HJ (2007) Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA 13(7):974–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32(6):279–285

    CAS  PubMed  Google Scholar 

  • Ruggiu M, Cooke HJ (2000) In vivo and in vitro analysis of homodimerisation activity of the mouse Dazl1 protein. Gene 252(1–2):119–126

    CAS  PubMed  Google Scholar 

  • Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389(6646):73–77

    CAS  PubMed  Google Scholar 

  • Saga Y (2010) Function of Nanos2 in the male germ cell lineage in mice. Cell Mol Life Sci 67(22):3815–3822

    CAS  PubMed  Google Scholar 

  • Saunders PT, Turner JM, Ruggiu M, Taggart M, Burgoyne PS, Elliott D, Cooke HJ (2003) Absence of mDazl produces a final block on germ cell development at meiosis. Reproduction 126(5):589–597

    CAS  PubMed  Google Scholar 

  • Sheets MD, Fox CA, Hunt T, Vande Woude G, Wickens M (1994) The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev 8(8):926–938

    CAS  PubMed  Google Scholar 

  • Shen R, Xie T (2009) NANOS: a germline stem cell’s Guardian Angel. J Mol Cell Biol 2(2):76–77

    Google Scholar 

  • Sheng Y, Tsai-Morris CH, Dufau ML (2003) Cell-specific and hormone-regulated expression of gonadotropin-regulated testicular RNA helicase gene (GRTH/Ddx25) resulting from alternative utilization of translation initiation codons in the rat testis. J Biol Chem 278(30):27796–27803

    CAS  PubMed  Google Scholar 

  • Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML (2006) Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J Biol Chem 281(46):35048–35056

    CAS  PubMed  Google Scholar 

  • Slaidina M, Lehmann R (2014) Translational control in germline stem cell development. J Cell Biol 207(1):13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RW, Anderson RC, Smith JW, Brook M, Richardson WA, Gray NK (2011) DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation. RNA 17(7):1282–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4(6):1017–1027

    CAS  PubMed  Google Scholar 

  • Stutz A, Huarte J, Gubler P, Conne B, Belin D, Vassalli JD (1997) In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes. Mol Cell Biol 17(4):1759–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su YQ, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtit J, Eppig JJ (2007) Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol 302(1):104–117

    CAS  PubMed  Google Scholar 

  • Takahashi K, Kotani T, Katsu Y, Yamashita M (2014) Possible involvement of insulin-like growth factor 2 mRNA-binding protein 3 in zebrafish oocyte maturation as a novel cyclin B1 mRNA-binding protein that represses the translation in immature oocytes. Biochem Biophys Res Commun 448(1):22–27

    CAS  PubMed  Google Scholar 

  • Takeda Y, Mishima Y, Fujiwara T, Sakamoto H, Inoue K (2009) DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PLoS One 4(10), e7513

    PubMed  PubMed Central  Google Scholar 

  • Tang PZ, Tsai-Morris CH, Dufau ML (1999) A novel gonadotropin-regulated testicular RNA helicase. A new member of the dead-box family. J Biol Chem 274(53):37932–37940

    CAS  PubMed  Google Scholar 

  • Tang H, Ross A, Capel B (2008) Expression and functional analysis of Gm114, a putative mammalian ortholog of Drosophila bam. Dev Biol 318(1):73–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tay J, Richter JD (2001) Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1(2):201–213

    CAS  PubMed  Google Scholar 

  • Tay J, Hodgman R, Sarkissian M, Richter JD (2003) Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev 17(12):1457–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai-Morris CH, Lei S, Jiang Q, Sheng Y, Dufau ML (2004a) Genomic organization and transcriptional analysis of gonadotropin-regulated testicular RNA helicase—GRTH/DDX25 gene. Gene 331:83–94

    CAS  PubMed  Google Scholar 

  • Tsai-Morris CH, Sheng Y, Lee E, Lei KJ, Dufau ML (2004b) Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. Proc Natl Acad Sci U S A 101(17):6373–6378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai-Morris CH, Koh E, Sheng Y, Maeda Y, Gutti R, Namiki M, Dufau ML (2007) Polymorphism of the GRTH/DDX25 gene in normal and infertile Japanese men: a missense mutation associated with loss of GRTH phosphorylation. Mol Hum Reprod 13(12):887–892

    CAS  PubMed  Google Scholar 

  • Tsai-Morris CH, Koh E, Dufau ML (2008) Differences in gonadotropin-regulated testicular helicase (GRTH/DDX25) single nucleotide polymorphism between Japanese and Chinese populations. Hum Reprod 23(11):2611–2613

    CAS  PubMed  Google Scholar 

  • Tsai-Morris CH, Sheng Y, Gutti R, Li J, Pickel J, Dufau ML (2010) Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) gene: cell-specific expression and transcriptional regulation by androgen in transgenic mouse testis. J Cell Biochem 109(6):1142–1147

    CAS  PubMed  Google Scholar 

  • Tsui S, Dai T, Roettger S, Schempp W, Salido EC, Yen PH (2000a) Identification of two novel proteins that interact with germ-cell-specific RNA-binding proteins DAZ and DAZL1. Genomics 65(3):266–273

    CAS  PubMed  Google Scholar 

  • Tsui S, Dai T, Warren ST, Salido EC, Yen PH (2000b) Association of the mouse infertility factor DAZL1 with actively translating polyribosomes. Biol Reprod 62(6):1655–1660

    CAS  PubMed  Google Scholar 

  • Urano J, Fox MS, Reijo Pera RA (2005) Interaction of the conserved meiotic regulators, BOULE (BOL) and PUMILIO-2 (PUM2). Mol Reprod Dev 71(3):290–298

    CAS  PubMed  Google Scholar 

  • VanGompel MJ, Xu EY (2010) A novel requirement in mammalian spermatid differentiation for the DAZ-family protein Boule. Hum Mol Genet 19(12):2360–2369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanorny DA, Prasasya RD, Chalpe AJ, Kilen SM, Mayo KE (2014) Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol Endocrinol 28(4):499–511

    PubMed  PubMed Central  Google Scholar 

  • Venables JP, Ruggiu M, Cooke HJ (2001) The RNA-binding specificity of the mouse Dazl protein. Nucleic Acids Res 29(12):2479–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vera Y, Dai T, Hikim AP, Lue Y, Salido EC, Swerdloff RS, Yen PH (2002) Deleted in azoospermia associated protein 1 shuttles between nucleus and cytoplasm during normal germ cell maturation. J Androl 23(5):622–628

    CAS  PubMed  Google Scholar 

  • Villaescusa JC, Allard P, Carminati E, Kontogiannea M, Talarico D, Blasi F, Farookhi R, Verrotti AC (2006) Clast4, the murine homologue of human eIF4E-Transporter, is highly expressed in developing oocytes and post-translationally modified at meiotic maturation. Gene 367:101–109

    CAS  PubMed  Google Scholar 

  • Villalba A, Coll O, Gebauer F (2011) Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 21(4):452–457

    CAS  PubMed  Google Scholar 

  • Wong LC, Schedl P (2011) Cup blocks the precocious activation of the orb autoregulatory loop. PLoS One 6(12), e28261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Brewer G (2012) The regulation of mRNA stability in mammalian cells: 2.0. Gene 500(1):10–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM (2003) Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33(2):187–191

    CAS  PubMed  Google Scholar 

  • Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490):328–330

    CAS  PubMed  Google Scholar 

  • Xu EY, Moore FL, Pera RA (2001) A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. Proc Natl Acad Sci U S A 98(13):7414–7419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu EY, Chang R, Salmon NA, Reijo Pera RA (2007) A gene trap mutation of a murine homolog of the Drosophila stem cell factor Pumilio results in smaller testes but does not affect litter size or fertility. Mol Reprod Dev 74(7):912–921

    CAS  PubMed  Google Scholar 

  • Yamamoto TM, Cook JM, Kotter CV, Khat T, Silva KD, Ferreyros M, Holt JW, Knight JD, Charlesworth A (2013) Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2. Biochim Biophys Acta 1829(10):1034–1046

    CAS  PubMed  Google Scholar 

  • Yang CK, Yen P (2013) Differential translation of Dazap1 transcripts during spermatogenesis. PLoS One 8(4), e60873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Medvedev S, Yu J, Tang LC, Agno JE, Matzuk MM, Schultz RM, Hecht NB (2005) Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci U S A 102(16):5755–5760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HT, Peggie M, Cohen P, Rousseau S (2009) DAZAP1 interacts via its RNA-recognition motifs with the C-termini of other RNA-binding proteins. Biochem Biophys Res Commun 380(3):705–709

    CAS  PubMed  Google Scholar 

  • Yasuda K, Kotani T, Ota R, Yamashita M (2010) Transgenic zebrafish reveals novel mechanisms of translational control of cyclin B1 mRNA in oocytes. Dev Biol 348(1):76–86

    CAS  PubMed  Google Scholar 

  • Zeng M, Deng W, Wang X, Qiu W, Liu Y, Sun H, Tao D, Zhang S, Ma Y (2008) DAZL binds to the transcripts of several Tssk genes in germ cells. BMB Rep 41(4):300–304

    CAS  PubMed  Google Scholar 

  • Zhang Y, Sheets MD (2009) Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA. BMC Dev Biol 9:7

    PubMed  PubMed Central  Google Scholar 

  • Zhong J, Peters AH, Lee K, Braun RE (1999) A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet 22(2):171–174

    Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work from the authors’ laboratory was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH cooperative agreement P50HD055764-06, as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research and RO1-GM097165 to MC. FF is supported by FP7-PEOPLE-2013-IOF GA 624874 MateRNA. SJH is supported by a grant from Research year of Inje University in 20140022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conti, M., Martins, J.P.S., Han, S.J., Franciosi, F. (2016). Translational Control in the Germ Line. In: Menon, PhD, K., Goldstrohm, PhD, A. (eds) Post-transcriptional Mechanisms in Endocrine Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-25124-0_7

Download citation

Publish with us

Policies and ethics