Skip to main content

From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2015)

Abstract

Brain Computer Interfaces (BCI) based on electroencephalography (EEG) rely on multichannel brain signal processing. Most of the state-of-the-art approaches deal with covariance matrices, and indeed Riemannian geometry has provided a substantial framework for developing new algorithms. Most notably, a straightforward algorithm such as Minimum Distance to Mean yields competitive results when applied with a Riemannian distance. This applicative contribution aims at assessing the impact of several distances on real EEG dataset, as the invariances embedded in those distances have an influence on the classification accuracy. Euclidean and Riemannian distances and means are compared both in term of quality of results and of computational load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.I.: \(\alpha \)-divergence is unique, belonging to both \(f\)-divergence and Bregman divergence classes. IEEE Trans. Inf. Theor. 55(11), 4925–4931 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barachant, A., Andreev, A., Congedo, M., et al.: The Riemannian potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry. In: Proceedings of TOBI Workshop IV, pp. 19–20 (2013)

    Google Scholar 

  5. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2012)

    Article  Google Scholar 

  6. Chebbi, Z., Moakher, M.: Means of Hermitian positive-definite matrices based on the log-determinant \(\alpha \)-divergence function. Linear Algebra Appl. 436(7), 1872–1889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Congedo, M., Barachant, A., Andreev, A.: A new generation of brain-computer interface based on Riemannian geometry. arXiv preprint arXiv:1310.8115 (2013)

  8. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning, vol. 2. Springer, New York (2009)

    Book  MATH  Google Scholar 

  10. Johannes, M.G., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5), 787–798 (1999)

    Article  Google Scholar 

  11. Kalunga, E.K., Chevallier, S., Rabreau, O., Monacelli, E.: Hybrid interface: integrating BCI in multimodal human-machine interfaces. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 530–535. IEEE (2014)

    Google Scholar 

  12. Kalunga, E.K., Djouani, K., Hamam, Y., Chevallier, S., Monacelli, E.: SSVEP enhancement based on canonical correlation analysis to improve BCI performances. In: AFRICON 2013, pp. 1–5. IEEE (2013)

    Google Scholar 

  13. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2011)

    Article  Google Scholar 

  14. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Baltimore (2004)

    Google Scholar 

  16. Nielsen, F., Bhatia, R.: Matrix Information Geometry. Springer Publishing Company Incorporated, Heidelberg (2012)

    Google Scholar 

  17. Rivet, B., Souloumiac, A., Attina, V., Gibert, G.: xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans. Biomed. Eng. 56(8), 2035–2043 (2009)

    Article  Google Scholar 

  18. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005)

    Google Scholar 

  19. Tomioka, R., Aihara, K., Müller, K.R.: Logistic regression for single trial EEG classification. In: NIPS, vol. 19, pp. 1377–1384 (2007)

    Google Scholar 

  20. Wang, S., James, C.J.: Enhancing evoked responses for BCI through advanced ICA techniques. In: MEDSIP, pp. 1–4 (2006)

    Google Scholar 

  21. Yger, F.: A review of kernels on covariance matrices for BCI applications. In: 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel K. Kalunga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kalunga, E.K., Chevallier, S., Barthélemy, Q., Djouani, K., Hamam, Y., Monacelli, E. (2015). From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification . In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics