Skip to main content

Current Therapies for Ventricular Tachycardia: Are there Autonomic Implications of the Arrhythmogenic Substrate?

  • Chapter
  • First Online:
Heart Failure Management: The Neural Pathways

Abstract

In the last two decades, significant advances have been made in diagnosis, understanding, and treatment of various ventricular arrhythmias (VA). Years ago, in its infancy, the field of cardiac electrophysiology was limited to the study of the effects of antiarrhythmic drugs on ventricular programmed stimulation in the setting of various disease states. However, modern scientific and technological advances not only have improved the characterization of the arrhythmia substrate but also have provided an opportunity to potentially cure many ventricular arrhythmias. Contemporary mapping systems, ablation catheters, and advanced intracardiac ultrasound technology have also significantly improved the efficacy and safety of ablation procedures. An increasing number of centers are embarking on a very exciting journey of ventricular tachycardia ablation programs, focusing on high-risk patients with low ejection fractions, as well as complex ablations involving epicardium, aortic cusps, and epicardial vessels. Patients who in the past would have otherwise had little chance of survival, now, with improvements in complex ablations, procedures can benefit from improved longevity and quality of life. Another recent significant advance has been the use of ventricular assist devices during the ablation of ventricular arrhythmias for high-risk patients with cardiogenic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey W. Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus. Springfield: Charles C Thomas; 1929.

    Google Scholar 

  2. Levy MN, Manuel NG, Martin P, Zieske H. Sympathetic and para- sympathetic interactions upon the left ventricle of the dog. Circ Res. 1966;19:5–10.

    Article  Google Scholar 

  3. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971;29:437–45.

    Article  CAS  PubMed  Google Scholar 

  4. Martins JB, Zipes DP. Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res. 1980;46:100–10.

    Article  CAS  PubMed  Google Scholar 

  5. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA. Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec. 1994;239:75–87.

    Article  CAS  PubMed  Google Scholar 

  6. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.

    Article  CAS  PubMed  Google Scholar 

  7. Leriche R, Herman L, Fontaine R. Ligature de la coronaire gauche et fonction du coeur après énervation sympathique. C R Soc Biol. 1931;107:547.

    Google Scholar 

  8. McEachern CG, Manning GW, Hall G. Sudden occlusion of coronary arteries following removal of cardiosensory pathways: experimental study. Arch Intern Med. 1940;65:661–70.

    Article  Google Scholar 

  9. Harris AS, Estandia A, Tillotson RF. Ventricular ectopic rhythms and ventricular fibrillation following cardiac sympathectomy and coronary occlusion. Am J Physiol. 1951;165:505–12.

    CAS  PubMed  Google Scholar 

  10. Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts. Cardiol Rev. 2010;18:275–84.

    Article  PubMed  Google Scholar 

  11. Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart. 2011;97:698–708.

    Article  CAS  PubMed  Google Scholar 

  12. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, Chen PS. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol. 2012;9:30–9.

    Article  Google Scholar 

  13. Schwartz PJ. Cutting nerves and saving lives. Heart Rhythm. 2009;6:760–3.

    Article  PubMed  Google Scholar 

  14. Shen M, Zipes D. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21.

    Article  CAS  PubMed  Google Scholar 

  15. Dukes ID, Vaughan Williams EM. Effects of selective alpha 1-, alpha 2-, beta 1-and beta 2-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol. 1984;355:523–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lukas A, Antzelevitch C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation. 1993;88:2903–15.

    Article  CAS  PubMed  Google Scholar 

  17. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation. 1998;98:2314–22.

    Article  CAS  PubMed  Google Scholar 

  18. Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart–a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol. 2001;86:319–29.

    Article  CAS  PubMed  Google Scholar 

  19. Zipes DP, Mihalick MJ, Robbins GT. Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovasc Res. 1974;8:647–55.

    Article  CAS  PubMed  Google Scholar 

  20. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    Article  CAS  PubMed  Google Scholar 

  21. Fareh S, Villemaire C, Nattel S. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation. 1998;98:2202–9.

    Article  CAS  PubMed  Google Scholar 

  22. Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early after depolarization-induced triggered activity. Circulation. 2003;107:2355–60.

    Article  PubMed  Google Scholar 

  23. Zipes DP, Rubart M. Neural modulation of cardiac arrhythmias and sudden cardiac death. Heart Rhythm. 2006;3:108–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;18:416–28.

    Article  CAS  PubMed  Google Scholar 

  25. Opthof T, Misier AR, Coronel R, Vermeulen JT, Verberne HJ, Frank RG, Moulijn AC, van Capelle FJ, Janse MJ. Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ Res. 1991;68:1204–15.

    Article  CAS  PubMed  Google Scholar 

  26. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  CAS  PubMed  Google Scholar 

  27. Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96.

    Article  CAS  PubMed  Google Scholar 

  28. Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21.

    Article  PubMed  Google Scholar 

  29. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16.

    Article  CAS  PubMed  Google Scholar 

  30. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    Article  CAS  PubMed  Google Scholar 

  31. Swissa M, Zhou S, Gonzalez-Gomez I, Chang CM, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol. 2004;43:858–64.

    Article  PubMed  Google Scholar 

  32. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95:76–83.

    Article  CAS  PubMed  Google Scholar 

  33. Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS, Chen LS. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol. 2012;59:954–61.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS, Lee YT. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res. 2003;92:1145–52.

    Article  CAS  PubMed  Google Scholar 

  35. Shusterman V, Aysin B, Gottipaty V, Weiss R, Brode S, Schwartzman D, Anderson KP. Autonomic nervous system activity and the spontaneous initiation of ventricular tachycardia. ESVEM Investigators. Electrophysiologic Study Versus Electrocardiographic Monitoring Trial. J Am Coll Cardiol. 1998;32:1891–9.

    Article  CAS  PubMed  Google Scholar 

  36. Doytchinova A, Patel J, Zhou S, Chen LS, Lin H, Shen C, Everett TH 4th, Lin SF, Chen PS. Subcutaneous nerve activity and spontaneous ventricular arrhythmias in ambulatory dogs. Heart Rhythm. 2015;12(3):612–20.

    Google Scholar 

  37. Szumowski L, Sanders P, Walczak F, Hocini M, Jais P, Kepski R, Szufladowicz E, Urbanek P, Derejko P, Bodalski R, Haissaguerre M. Mapping and ablation of polymorphic ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2004;44:1700–6.

    Article  PubMed  Google Scholar 

  38. Linz D, Wirth K, Ukena C, Mahfouf F, Poss J, Linz B, Bohm M, Neuberger HR. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm. 2013;10:1525–30.

    Article  PubMed  Google Scholar 

  39. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka P, Gawaz M, Bohm M. Renal sympathetic denervation for the treatment of electrical storm: first in man experience. Clin Res Cardiol. 2012;101:63–7.

    Article  PubMed  Google Scholar 

  40. Vaseghi M, Gima J, Kanaan C, Ajijola O, Marmureanu A, Mahajan A, Shivkumar K. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long term follow up. Heart Rhythm. 2014;11:360–6.

    Article  PubMed  Google Scholar 

  41. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull Jr SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa M, Zhou S, Tan A, Song J, Gholmieh G, Fishbein M, Luo H, Siegel R, Karagueuzian H, Chen L, Lin S, Chen P. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing induced congestive heart failure. J Am Coll Cardiol. 2007;50:335–43.

    Article  PubMed  Google Scholar 

  43. Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A. Long- term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail. 2008;10:884–91.

    Article  PubMed  Google Scholar 

  44. Noda T, Takaki H, Kurita T, et al. Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. Eur Heart J. 2002;23:975–83.

    Article  CAS  PubMed  Google Scholar 

  45. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol. 1996;28:1836–48.

    Article  CAS  PubMed  Google Scholar 

  46. Huffaker R, Lamp ST, Weiss JN, Kogan B. Intracellular calcium cycling, early after depolarizations, and reentry in simulated long QT syndrome. Heart Rhythm. 2004;1:441–8.

    Article  PubMed  Google Scholar 

  47. Antzelevitch C. Sympathetic modulation of the long QT syndrome. Eur Heart J. 2002;23:1246–52.

    Article  CAS  PubMed  Google Scholar 

  48. Cerrone M, Noujaim SF, Tolkacheva EG, Talkachou A, O’Connell R, Berenfeld O, Anumonwo J, Pandit SV, Vikstrom K, Napolitano C, Priori SG, Jalife J. Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2007;101:1039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Watanabe H, Werf C, Roses-Noguer F, Adler A, Sumitomo N, Veltman C, Rosso R, Till J, Wilde A. Effects of flecainide on exercise- induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2013;10:542–7.

    Article  PubMed  Google Scholar 

  50. Collura CA, Johnson JN, Moir C, Ackerman MJ. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 2009;6:752–9.

    Article  PubMed  Google Scholar 

  51. Brugada P, Brugada J. Right bundle branch block, persistent st segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J Am Coll Cardiol. 1992;20:1391–6.

    Article  CAS  PubMed  Google Scholar 

  52. Nademanee K, Veerakul G, Chandanamattha P, Chaothawee L, Ariyachaipanich A. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011;123(12):1270–9.

    Article  PubMed  Google Scholar 

  53. Wichter T, Schäfers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, Hermansen F, Schober O, Breithardt G, Camici PG. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation. 2000;101:1552–8.

    Article  CAS  PubMed  Google Scholar 

  54. Philips B, Madhavan S, James C, Tichnell C, Murray B, Dalal D, Bhonsale A, Nazarian S, Judge DP, Russell SD, Abraham T, Calkins H, Tandri H. Outcomes of catheter ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Arrhythm Electrophysiol. 2012;5(3):499–505.

    Article  PubMed  Google Scholar 

  55. Mizumaki K, Nishida K, Iwamoto J, Nakatani Y, Yamaguchi Y, Sakamoto T, Tsuneda T, Kataoka N, Inoue H. Vagal activity modulates spontaneous augmentation of J-wave elevation in patients with idiopathic ventricular fibrillation. Heart Rhythm. 2012;9:249–55.

    Article  PubMed  Google Scholar 

  56. Van Herendael H, Zado E, Haqqani H, Tschabrunn C, Callans D, Frankel D, Lin D, Garcia D, Hutchinson M, Riley M, Bala R, Dixit S, Yadava M, Marchlinki F. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm. 2014;11:566–73.

    Article  PubMed  Google Scholar 

  57. Santoro F, Di Biase L, Hranitzky P, Sanchez J, Santangeli P, Paoletti Perini A, Burkhardt J, Natale A. Ventricular fibrillation triggered by PVCS from papillary muscles: clinical features and ablation. J Cardiovasc Electrophysiol. 2014;25:1158–64.

    Article  PubMed  Google Scholar 

  58. Nogami A. Mapping and ablating ventricular premature contractions that trigger ventricular fibrillation: trigger elimination and substrate modification. J Cardiovasc Electrophysiol. 2015;26:110–5.

    Article  PubMed  Google Scholar 

  59. Doll N, Pritzwald-Stegmann P, Czesla M, Kempfert J, Stenzel MA, Borger MA, et al. Ablation of ganglionic plexi during combined surgery for atrial fibrillation. Ann Thorac Surg. 2008;86(5):1659–63. Evaluation studies.

    Article  PubMed  Google Scholar 

  60. McClelland JH, Duke D, Reddy R. Preliminary results of a limited thoracotomy: new approach to treat atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(12):1289–95. Clinical trial.

    Article  PubMed  Google Scholar 

  61. Mehall JR, Kohut Jr RM, Schneeberger EW, Taketani T, Merrill WH, Wolf RK. Intraoperative epicardial electrophysiologic mapping and isolation of autonomic ganglionic plexi. Annals of Thorac Surgery. 2007;83(2):538–41.

    Article  Google Scholar 

  62. Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20(10):1186–9. Review.

    Article  PubMed  Google Scholar 

  63. Patel P, Ahlemeyer L, Freas M, Cooper J, Marchlinski F, Callans D, Hutchinson M. Outflow tract premature ventricular depolarizations after atrial fibrillation ablation may reflect autonomic influences. J Interv Card Electrophysiol. 2014;41:187–92.

    Article  PubMed  Google Scholar 

  64. Yarlagadda RK, Iwai S, Stein KM, et al. Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation. 2005;112:1092–7.

    Article  PubMed  Google Scholar 

  65. Sekiguchi Y, Aonuma K, Yamauchi Y, et al. Chronic hemodynamic effects after radiofrequency catheter ablation of frequent monomorphic ventricular premature beats. J Cardiovasc Electrophysiol. 2005;16:1057–63.

    Article  PubMed  Google Scholar 

  66. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm. 2007;4:863–7.

    Article  PubMed  Google Scholar 

  67. Mountantonankis S, Frankel D, Gerstenfeld E, Dixit S, Lin D, Hutchingson M, Riley M, Bala R, Cooper J, Callans D, Garcia F, Zado E, Marchlinski F. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm. 2011;8:1608–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Costea MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Costea, A., Zardkoohi, O. (2016). Current Therapies for Ventricular Tachycardia: Are there Autonomic Implications of the Arrhythmogenic Substrate?. In: Gronda, E., Vanoli, E., Costea, A. (eds) Heart Failure Management: The Neural Pathways. Springer, Cham. https://doi.org/10.1007/978-3-319-24993-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24993-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24991-9

  • Online ISBN: 978-3-319-24993-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics