Skip to main content

TomoGC: Binary Tomography by Constrained GraphCuts

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9358))

Included in the following conference series:

Abstract

We present an iterative reconstruction algorithm for binary tomography, called TomoGC, that solves the reconstruction problem based on a constrained graphical model by a sequence of graphcuts. TomoGC reconstructs objects even if a low number of measurements are only given, which enables shorter observation periods and lower radiation doses in industrial and medical applications. We additionally suggest some modifications of established methods that improve state-of-the-art methods. A comprehensive numerical evaluation demonstrates that the proposed method can reconstruct objects from a small number of projections more accurate and also faster than competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.ubc.ca/~schmidtm/Software/minConf.html.

References

  1. van Aarle, W., Palenstijn, W.J., Beenhouwer, J.D., Altantzis, T., Bals, S., Batenburg, K.J., Sijbers, J.: The ASTRA-toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy (2015)

    Google Scholar 

  2. Batenburg, K.J.: A network flow algorithm for reconstructing binary images from continuous x-rays. J. Math. Imaging Vis. 30(3), 231–248 (2008)

    Article  MathSciNet  Google Scholar 

  3. Batenburg, K.J., Sijbers, J.: Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157(3), 438–451 (2009)

    Article  MathSciNet  Google Scholar 

  4. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  6. Bleichrodt, F., Tabak, F., Batenburg, K.J.: SDART: an algorithm for discrete tomography from noisy projections. Comput. Vis. Image Underst. 129, 63–74 (2014)

    Article  Google Scholar 

  7. Bracewell, R.N., Riddle, A.C.: Inversion of fan-beam scans in radio astronomy. Astron. J. 150(2), 427–434 (1967)

    Article  Google Scholar 

  8. Capricelli, T., Combettes, P.: A convex programming algorithm for noisy discrete tomography. In: Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)

    Google Scholar 

  9. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Heidelberg (2013)

    Google Scholar 

  10. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4), 444–466 (1981)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    Google Scholar 

  12. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  13. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Combettes, P.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  15. Denitiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase transitions and cosparse tomographic recovery of compound solid bodies from few projections. Fundamenta Informaticae 135, 73–102 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gorelick, L., Schmidt, F.R., Boykov, Y.: Fast trust region for segmentation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June, 2013, pp. 1714–1721 (2013)

    Google Scholar 

  17. Goris, B., Van den Broek, W., Batenburg, K., Mezerji, H., Bals, S.: Electron tomography based on a total variation minimization reconstruction techniques. Ultramicroscopy 113, 120–130 (2012)

    Article  Google Scholar 

  18. Gouillart, E., Krzakala, F., Mezard, M., Zdeborova, L.: Belief-propagation reconstruction for discrete tomography. Inverse Prob. 29(3), 035003 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gregor, J., Benson, T.: Computational analysis and improvement of SIRT. IEEE Trans. Med. Imaging 27(7), 918–924 (2008)

    Article  Google Scholar 

  20. Gustavsson, E., Patriksson, M., Strömberg, A.B.: Primal convergence from dual subgradient methods for convex optimization. Math. Program. 150(2), 365–390 (2015)

    Article  MathSciNet  Google Scholar 

  21. Hanke, R., Fuchs, T., Uhlmann, N.: X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Meth. Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors Associated Equipment 591(1), 14–18 (2008). Radiation Imaging Detectors 2007 Proceedings of the 9th International Workshop on Radiation Imaging Detectors

    Google Scholar 

  22. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  Google Scholar 

  23. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  24. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  25. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)

    Article  Google Scholar 

  26. Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond via dual decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 531–552 (2011)

    Article  Google Scholar 

  27. Lim, Y., Jung, K., Kohli, P.: Efficient energy minimization for enforcing label statistics. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1893–1899 (2014)

    Article  Google Scholar 

  28. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 1–108 (2013)

    Google Scholar 

  29. Smith-Bindman, R., Lipson, J., Marcus, R., et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 169(22), 2078–2086 (2009)

    Article  Google Scholar 

  30. Raj, A., Singh, G., Zabih, R.: MRF’s for MRI’s: Bayesian reconstruction of MR images via graph cuts. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, 17–22 June 2006, pp. 1061–1068 (2006)

    Google Scholar 

  31. Sidky, E.Y., Jakob, H., Jörgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Phys. Med. Biol. 57(10), 3065 (2012)

    Article  Google Scholar 

  32. Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the Potts model. Inverse Prob. 31(2), 025003 (2015)

    Article  MathSciNet  Google Scholar 

  33. Tang, M., Ben Ayed, I., Boykov, Y.: Pseudo-bound optimization for binary energies. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 691–707. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  34. Tuysuzoglu, A., Karl, W., Stojanovic, I., Castanon, D., Unlu, M.: Graph-cut based discrete-valued image reconstruction. IEEE Trans. Image Process. 24(5), 1614–1627 (2015)

    Article  MathSciNet  Google Scholar 

  35. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. Electron. Notes Discrete Math. 12, 243–254 (2003)

    Article  MathSciNet  Google Scholar 

  37. Xiao, L., Johansson, M., Boyd, S.: Simultaneous routing and resource allocation via dual decomposition. IEEE Trans. Commun. 52(7), 1136–1144 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of our research work by the DFG, grant GRK 1653. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hendrik Kappes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kappes, J.H., Petra, S., Schnörr, C., Zisler, M. (2015). TomoGC: Binary Tomography by Constrained GraphCuts. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24947-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24946-9

  • Online ISBN: 978-3-319-24947-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics