Skip to main content

Photosynthesis and Light Harvesting in Algae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

The eukaryotic algae display a spectacular diversity of light harvesting pigments and photosynthetic mechanisms. By contrast the Cyanobacteria on one side and the land plants on the other are uniformly dull. The Cyanobacteria make up for this relative uniformity in just one way: they have a much greater range of chlorophyll pigments, and in the case of chlorophyll d, this pigment does nearly all the heavy lifting in photosynthesis. The plastids of eukaryotic algae arose by endosymbiosis from Cyanobacteria, but during this phase of evolution, which lasted perhaps 1.5 billion years, many new structures and pigments evolved, giving the basis for the overall diversity. Three types of primary plastids occur today, the chloroplasts (Chlorophyta), the rhodoplasts (Rhodophyta) and the glaucoplasts (Glaucophyta), each with characteristic pigments and photosynthetic mechanisms. These primary lines became secondarily endosymbiotic, giving rise to secondary plastids and several evolutionary lines of eukaryotic algae. Here mention should be made of lines with chlorophyll c such as diatoms, with fucoxanthin as a main pigment, dinoflagellates with peridinin and other major members of the oceanic phytoplankton with a range of carotenoid pigments. And moving further down the evolutionary road one comes to the apicomplexans, which have lost their photosynthetic capacity but which retain an apicoplast and are important pathogens, such as the malaria organism. In all these photosynthetic, eukaryotic algae there has also been a development of mechanisms to cope with variable light, generally known as non-photochemical quenching, which is developed to a much greater extent compared to Cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

References

  • Allen JF (1992) Protein phoshorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Bennett J, Steinbeck KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:482–492

    Article  Google Scholar 

  • Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, Franck F, Wollman FA, Niyogi KK, Krieger-Liszkay A, Minagawa J, Finazzi G (2013) A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsalane W, Rousseau B, Duval JC (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom – competition between photoprotection and photoinhibition. Photochem Photobiol 60:237–243

    Article  CAS  Google Scholar 

  • Ball SG, Subtil A, Bhattacharya D, Moustafa A, Weber APM, Gehre L, Colleoni C, Arias MC, Cenci U, Dauvillée D (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belgio E, Duffy CDP, Ruban AV (2013) Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys Chem Chem Phys 15:12253–12261

    Article  CAS  PubMed  Google Scholar 

  • Berner T (1993) Ultrastructure of microalgae. CRC Press, Boca Raton

    Google Scholar 

  • Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Cecilia Arias M, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau M-M, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nature Commun 4:1941. doi:10.1038/ncomms2931

    Google Scholar 

  • Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley, New York

    Google Scholar 

  • Bonaventura CJ, Myers J (1989) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 301:227–248

    Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105

    Article  Google Scholar 

  • Bruce D, Biggins J, Steiner T, Thewalt M (1986) Exctation energy tansfer in cryptophytes. Fluorescence excitation spectra and picosecond time-resolved emeission spectra of intact alga at 77K. Photochem Photobiol 44:519–525

    Article  CAS  Google Scholar 

  • Büchel C, Wilhelm C (1990) Wavelength independent state transitions and light regulated chlororespiration as mechanisms to control the energy status in the chloroplast of Pleurochloris meiringensis. Plant Physiol Biochem 28:307–314

    Google Scholar 

  • Bulté L, Gans P, Rebéille F, Wollman F-A (1990) ATP control of state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020:72–80

    Article  Google Scholar 

  • Butler W (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    Article  CAS  Google Scholar 

  • Caron L, Remy R, Berkaloff C (1988) Polypeptide composition of light-harvesting complexes from some brown-algae and diatoms. FEBS Lett 229:11–15

    Article  CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–19.

    Article  CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nature Chem Biol 10:492–501

    Article  CAS  Google Scholar 

  • Czaja AD, Johnson CM, Beard BL, Roden EE, Li W, Moorbath S (2013) Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet Sci Lett 363:192–203

    Article  CAS  Google Scholar 

  • Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenergy 1273:150–158

    Article  Google Scholar 

  • Delphin E, Duval JC, Kirilovsky D (1995) Comparison of state 1-state 2 transitions in the green alga Chlamydomonas reinhardtii and in the red alga Rhodella violacea. Effect of kinase and phosphatase inhibitors. Biochim Biophys Acta Bioenergy 1232:91–95

    Article  Google Scholar 

  • Delphin E, Duval L, Etienne A, Kiirilovsky D (1996) State transitions or ΔpH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35:9435–9443

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (1993) The xanthophyll cycle. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Chapman & Hall, London, pp 206–251

    Google Scholar 

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • DePriest MS, Bhattacharya D, Lopez-Bautista JM (2013) The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae). PLoS One 8(7):e68246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doege M, Ohmann E, Tschiersch H (2000) Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynth Res 63:159–170

    Article  CAS  PubMed  Google Scholar 

  • Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier-Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014a) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenergy 1837:63–72

    Article  CAS  Google Scholar 

  • Drop B, Yadav KNS, Boekema EJ, Croce R (2014b) Consequences of state transitions on the structural and functional organization of Photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191

    Article  CAS  PubMed  Google Scholar 

  • Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evolutionary Biology 10:233. doi: 10.1186/1471-2148-10-233

    PubMed  PubMed Central  Google Scholar 

  • Escoubas JM, Lomas M, Laroche J, Falkowski PG (1996) Light intensity regulation of CAB gene transcription is signaled by redox state of plastoquinone pool. Proc Natl Acad Sci U S A 92:10237–10241

    Article  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Fehling J, Stoeker D, Baldauf S (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, Amsterdam, pp 75–107

    Chapter  Google Scholar 

  • Fork DC, Satoh K (1986) The control of state transitions of the distribution of excitation energy in photosysnthesis. Annu Rev Plant Physiol 37:335–361

    Article  CAS  Google Scholar 

  • Fork DC, Herbert SK, Malkin S (1991) Light energy distribution in the brown alga Macrocystis pyrifera (giant kelp). Plant Physiol 95:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fosberg J, Allen JF (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    Article  Google Scholar 

  • Gan F, Zhang SY, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Gibbs PB, Biggins J (1991) In vivo and in vitro protein phosphorylation studies in Ochromonas danica, an alga with chlorophyll a/c/fucoxanthin binding protein. Plant Physiol 97:388–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazer AN, Wedemeyer GJ (1995) Cryptomonad biliproteins – an evolutionary perspective. Photosynth Res 46:93–105

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Bohme KC (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin – consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621

    Article  CAS  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  CAS  PubMed  Google Scholar 

  • Green BR (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107:103–115

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2014) Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins in diatoms. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Springer, Dordrecht, pp 21–37

    Chapter  Google Scholar 

  • Gundermann K, Schmidt M, Weisheit W, Mittag M, Buchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta Bioenergy 1827:303–310

    Article  CAS  Google Scholar 

  • Gwizdala M, Wilson A, Omairi-Nasser A, Kirilovsky D (2013) Characterization of the Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. Biochim Biophys Acta Bioenergy 1827:348–354

    Article  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Larkum AWD, Prasil O, Kramer DM, Szabo M, Kumar V, Ralph PJ (2012) Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs 31:963–975

    Article  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD (2008) The origin of plastids. Philos Trans R Soc Lond B 363:2675–2685

    Article  CAS  Google Scholar 

  • Hsu SH, Paoletti C, Torres M, Ritchie RJ, Larkum AWD, Grillet C (2012) Light transmission of the marine diatom Coscinodiscus wailesii. In: Lakhtakia A, Martin RJ, Palma J (eds) Bioinspiration, biomimetics, and bioreplication, Proc. of SPIE, Vol 8339, 83390F. SPIE, Bellingham. doi: 10.1117/12.915044

  • Ihnken S, Kromkamp JC, Beardall J, Silsbe GM (2014) State-transitions facilitate robust quantum yields and cause an over-estimation of electron transport in Dunaliella tertiolecta cells held at the CO2 compensation point and re-supplied with DIC. Photosynth Res 119:257–272

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW (1989) Chlorophyl c pigments and their distribution in chromophytic algae. In: Green JC, Leadbetter BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 13–36

    Google Scholar 

  • Josue JS, Frank HA (2002) Direct determination of the S-1 excited-state energies of xanthophylls by low-temperature fluorescence spectroscopy. J Phys Chem A 106:4815–4824

    Article  CAS  Google Scholar 

  • Kanazawa A, Blanchard GJ, Szabo M, Ralph PJ, Kramer DM (2014) The site of regulation of light capture in symbiodinium: does the peridinin-chlorophyll alpha-protein detach to regulate light capture? Biochim Biophys Acta Bioenergy 1837:1227–1234

    Article  CAS  Google Scholar 

  • Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta Bioenergy 1817:158–166

    Article  CAS  Google Scholar 

  • Kowalczyk N, Rappaport F, Boyen C, Wollman FA, Collen J, Joliot P (2013) Photosynthesis in Chondrus crispus: the contribution of energy spill-over in the regulation of excitonic flux. Biochim Biophys Acta Bioenergy 1827:834–842

    Article  CAS  Google Scholar 

  • Larkum AWD (2003) Light-harvesting systems in algae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 277–304

    Chapter  Google Scholar 

  • Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls. Springer, Berlin, pp 261–282

    Chapter  Google Scholar 

  • Larkum AWD (2008) Evolution of the reaction centers and photosystems. In: Renger G (ed) Primary processes of photosynthesis: principles and apparatus. Part 2. Royal Society of Chemistry Publishing, Cambridge, pp 489–521

    Google Scholar 

  • Larkum AWD, Barrett J (1983) Light harvesting processes in algae. Adv Bot Res 10:1–219

    Article  CAS  Google Scholar 

  • Larkum AWD, Howe CJ (1997) Molecular aspects of light harvesting processes in algae. Adv Bot Res 27:257–330

    Article  CAS  Google Scholar 

  • Larkum AWD, Vesk M (2003) Algal plastids: their fine structure and properties. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis of algae. Kluwer Publishing, Dordrecht, pp 11–28

    Chapter  Google Scholar 

  • Larkum AWD, Lockhart PJ, Howe CJ (2007) The origin of plastids: a shopping bag model. Photosynth Res 91:272

    Google Scholar 

  • Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J (2013) High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley AC, Butler WL (1980) Energy distribution in the photchemical apparatus of Porphyridium cruentum in State1 and State 2. Biochim Biophys Acta Bioenergy 592:349–363

    Article  CAS  Google Scholar 

  • Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci U S A 99:15222–15227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Lopes JS, Foster PG, Embley TM, Cox CJ (2014) Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol 31:1697–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtle C, Arsalane W, Duval JC, Passaquet C (1995) Characterization of the light-harvesting complex of Giraudyopsis stellifer (Chrysophyceaeae) and effects of light stress. J Phycol 31:380–387

    Article  CAS  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96:8784–8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucker B, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459

    Article  CAS  PubMed  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoezel J, Scheller HV (2000) The PS I-H subunit of Photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–615

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R et al (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta Bioenergy 1787:1189–1197

    Article  CAS  Google Scholar 

  • Minagawa J (2013) Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Front Plant Sci 4:513. doi:10.3389/fpls.2013.00513

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Mohanty N, Gilmore AM, Yamamoto HY (1995) Mechanism of non-photochemical chlorophyll fluorescence quenching. 2. Resolution of rapidly reversible absorbance changes at 530 nm and fluorescence quenching by the effects of antimycin, dibucaine and cation exchanger A23187. Aust J Plant Physiol 22:239–247

    Article  CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullineau CW, Sarcina M (2002) Probing the dynamic of photosynthetic mebranes with fluorescence recovery after photobleaching. Trends Plant Sci 7:27–42

    Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 189:171–181

    Article  CAS  PubMed  Google Scholar 

  • Murata N (1970) Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis. Biochim Biophys Acta 205:379–389

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    Article  CAS  PubMed  Google Scholar 

  • Nowack ECM, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 109:5340–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880

    Article  PubMed  Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  CAS  PubMed  Google Scholar 

  • Pursiheimo S, Rintamaki E, Baena-Gonzalez E, Aro EM (1998) Thylakoid protein phosphorylation in evolutionally divergent species with oxygenic photosynthesis. FEBS Lett 423:178–182

    Article  CAS  PubMed  Google Scholar 

  • Quigg A, Kotabová E, Jarešová J, Kaňa R, Setlík J, Sedivá B, Komárek O, Prášil O (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS One 7(10):e47036. doi:10.1371/journal.pone.0047036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci U S A 105:13674–71368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Ruban A (2013) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley, Chichester, 267 pp

    Google Scholar 

  • Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942 – effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276:46830–46834

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Fork DC (1983) State I – State II transitions in the green alga Scenedesmus obliquus. Photochem Photobiol 37:429–434

    Article  CAS  Google Scholar 

  • Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, Shick H, Christensen S, Hou S, Wan X, Donachie SP (2013) Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp nov., from a lava cave in Kilauea Caldera, Hawai’i. PLoS One 8(10):e76376. doi:10.1371/journal.pone.0076376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca Raton, 1257 pp

    Google Scholar 

  • Schliep M, Cavigliasso G, Quinnell RG, Stranger R, Larkum AWD (2013) Formyl group modification of chlorophyll a: a major evolutionary mechanism in oxygenic photosynthesis. Plant Cell Environ 36:521–527

    Article  CAS  PubMed  Google Scholar 

  • Schmitt F-J, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI (2014) Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta Bioenergy 1837:835–848

    Article  CAS  Google Scholar 

  • Schreiber U, Endo T, Mi HL, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method – particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 5:873–882

    Google Scholar 

  • Schulte T, Sharples FP, Hiller RG, Hofmann E (2009) X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: modulation of the spectral properties of pigments by the protein environment. Biochemistry 48:4466–4475

    Article  CAS  PubMed  Google Scholar 

  • Sedoud A, Lopez-Igual R, Rehman AU, Wilson A, Perreau F, Boulay C, Vass I, Krieger-Liszkay A, Kirilovsky D (2014) The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher. Plant Cell 26:1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 117:11326–11336

    Article  CAS  PubMed  Google Scholar 

  • Song P-S, Koka P, Prezelin BB, Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry 15:4422–4427

    Article  CAS  PubMed  Google Scholar 

  • Stransky H, Hager A (1970) Das Carotenoidmuster und die Verbreitung des lichtinduzerten Xanthophyll-Cyclus in verschiedenen Algenklassen. IV. Chemosystematische Betrachtung. Arch Mikrobiol 73:315–323

    Article  CAS  PubMed  Google Scholar 

  • Sturm S, Engelken J, Gruber A, Vugrinec S, Kroth PG, Adamska I, Lavaud J (2013) A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 13:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo M, Parker K, Guruprasad S, Kuzhiumparambil U, Lilley RM, Tamburic B, Schliep M, Larkum AWD, Schreiber U, Raven JA, Ralph PJ (2014) Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis. Bioresour Technol 167:521–529

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nature Commun 4:1954. doi:10.1038/ncomms2954

    Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Lohuis MR, Miller DJ (1998) Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulbert (Dinophyceae) – changes in cytosine methylaion accompany photadaptation. Plant Physiol 117:189–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikkanen M, Suorsa M, Gollan PJ, Aro EM (2012) Post-genomic insight into thylakoid membrane lateral heterogeneity and redox balance. FEBS Lett 586:2911–2916

    Article  CAS  PubMed  Google Scholar 

  • Toole CM, Allnutt FCT (2003) Red, cryptomonad and glaucocystophyte phycolbiliproteins. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 305–334

    Chapter  Google Scholar 

  • Torres M, Ritchie RJ, Lilley RM, Grillet C, Larkum AWD (2013) Measurement of photosynthesis and photosynthetic efficiency in two diatoms. N Z J Bot 52:6–27

    Article  Google Scholar 

  • Unlu C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 111:3460–3465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169:95–108

    Article  CAS  PubMed  Google Scholar 

  • Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG, Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proc Natl Acad Sci U S A 96:8901–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. Embo J 20:3623–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51:639–648

    Article  CAS  Google Scholar 

  • Zhang Y, Chen M, Church B, Lau KW, Larkum AWD, Jermiin LS (2010) The molecular structure of the IsiA–Photosystem I supercomplex, modelled from high-resolution, crystal structures of Photosystem I and the CP43 protein. Biochim Biophys Acta Bioenergy 1797:457–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to my wife, Hilary, who died during its preparation. I also wish to thank my many colleagues for their support and stimulating discussions over many past years. In particular, I wish to acknowledge the generous support given by Prof P J Ralph and the University of Technology Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Larkum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larkum, A.W. (2016). Photosynthesis and Light Harvesting in Algae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_3

Download citation

Publish with us

Policies and ethics