Skip to main content

The Noncommutative Supersymmetric Standard Model

  • Chapter
  • First Online:
Supersymmetry and Noncommutative Geometry

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 9))

  • 1129 Accesses

Abstract

We apply our formalism for supersymmetric theories in the context of noncommutative geometry to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model (MSSM). We obtain the exact particle content of the MSSM and identify (in form) its interactions, but conclude that their coefficients are such that the standard action functional used in noncommutative geometry is in fact not supersymmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Keep in mind that we ensure the Hilbert space being complex by defining it as a bimodule of the complexification \(\mathscr {A}^{\mathbb {C}}\) of \(\mathscr {A}\), rather than of \(\mathscr {A}\) itself [3].

  2. 2.

    In the strict sense the Standard Model does not feature a right handed neutrino (nor does the MSSM), but allows for extensions that do. On the other hand the more recent derivations of the SM from noncommutative geometry naturally come with a right-handed neutrino. We will incorporate it from the outset, always having the possibility to discard it should we need to.

References

  1. T. van den Broek, W.D. van Suijlekom, Going beyond the standard model with noncommutative geometry. J. High Energy Phys. 3, 112 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A.H. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A.H. Chamseddine, A. Connes, Why the standard model. J. Geom. Phys. 58, 38–47 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J. Lykken, L.T. Wang, The soft supersymmetry-breaking Lagrangian: theory and applications. Phys. Rep. 407, 1–203 (2005)

    Article  ADS  Google Scholar 

  6. A. Connes, Noncommutative Geometry (Academic Press, Boston, 1994)

    MATH  Google Scholar 

  7. A. Connes, Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  ADS  MATH  Google Scholar 

  8. A. Connes, Noncommutative Geometry Year 2000 (2007), math/0011193

    Google Scholar 

  9. M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles (World Scientific Publishing Co., Singapore, 2004)

    Google Scholar 

  10. K. van den Dungen, W.D. van Suijlekom, Electrodynamics from noncommutative geometry. J. Noncommutative Geom. 7, 433–456 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.B. Gilkey, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, vol. 11, Mathematics Lecture Series (Publish or Perish, Wilmington, 1984)

    MATH  Google Scholar 

  12. B. Iochum, T. Schücker, C. Stephan, On a classification of irreducible almost commutative geometries. J. Math. Phys. 45, 5003–5041 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. T. Krajewski, Classification of finite spectral triples. J. Geom. Phys. 28, 1–30 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. Lizzi, G. Mangano, G. Miele, G. Sparano, Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6357–6366 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Schücker, Spin Group and Almost Commutative Geometry (2007), hep-th/0007047

    Google Scholar 

  16. J.C. Várilly, An Introduction to Noncommutative Geometry (European Mathematical Society, Zurich, 2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs van den Broek .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Beenakker, W., van den Broek, T., van Suijlekom, W.D. (2016). The Noncommutative Supersymmetric Standard Model. In: Supersymmetry and Noncommutative Geometry. SpringerBriefs in Mathematical Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-24798-4_4

Download citation

Publish with us

Policies and ethics