Skip to main content

Regulation of Na+-K+-ATPase in Pulmonary Vasculature

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Abstract

Na+-K+-ATPase plays important role in maintaining pulmonary vascular tone as well as homoeostasis. Two different isoforms of Na+-K+-ATPase has been identified in ovine pulmonary artery. α-1 subunit of Na+-K+-ATPase is responsible for the regulation of basal tone of pulmonary artery in sheep. Arachidonic acid inhibits Na+-K+-ATPase in ovine pulmonary artery via 20-HETE production and protein kinase C pathway. Whereas, lipoxygenase has a secondary role in arachidonic acid-induced inhibition of Na+-K+-ATPase in this particular vasculature. BAY 41-2272 a NO-independent activator of sGC induces cGMP-independent vasodilation of sheep pulmonary artery through stimulation of sodium pump which is the primary target for the vasodilation of this vasculature. Eicosapentaenoic acid inhibits functional Na+-K+-ATPase through decrease in the protein expression of the α-1 subunit of sodium pump in pulmonary artery but this attenuation is independent of cGMP production. Sodium nitroprusside induced vasodilation is the result of the link between increased intracellular cGMP and activated sarcolemmal Na+-K+-ATPase in canine pulmonary arterial smooth muscle cells. High salt diet leads to electrical changes in rat pulmonary artery which may be due to the opening of K+ channels and activation of sodium pump. H2O2, xanthine, and xanthine oxidase stimulate sodium pump activity of bovine pulmonary arterial endothelial cells. Regulation of sodium pump expression or activity and trafficking occurs by activation of dopamine receptors in various tissues including lungs and vascular beds. In conclusion, Na+-K+-ATPase is regulated in pulmonary vasculature of different species like ovine, canine, bovine and human by different signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleming WW (1994) The electrogenic Na+, K+-pump in smooth muscle: physiologic and pharmacologic significance. Ann Rev Pharmacol Toxicol 20:129–149

    Article  Google Scholar 

  2. Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387

    CAS  PubMed  Google Scholar 

  3. O’Donnell ME, Owen NE (1994) Regulation of ion pumps and carriers in vascular smooth muscle. Physiol Rev 74:683–721

    PubMed  Google Scholar 

  4. Tamaoki J, Tagaya E, Yamawaki I et al (1996) Hypoxia impairs nitrovasodilator-induced pulmonary vasodilation: role of Na+-K+-ATPase activity. Am J Physiol 271(1 Pt 1):L172–L177

    CAS  PubMed  Google Scholar 

  5. Chanda D, Krishna AV, Gupta PK et al (2008) Role of low ouabain-sensitive isoform of Na+-K+-ATPase in the regulation of basal tone and agonist-induced contractility in ovine pulmonary artery. J Cardiovasc Pharmacol 52(2):167–175

    Article  CAS  PubMed  Google Scholar 

  6. Janssens SP, Kachoris C, Parker WL et al (1993) Hypothalamic Na+, K + -ATPase inhibitor constricts pulmonary arteries of spontaneously hypertensive rats. J Cardiovasc Pharmacol 22:S42–S46

    Article  CAS  PubMed  Google Scholar 

  7. Shubat PJ, Bowers RJ, Huxtable RJ (1990) Na+/K(+)-adenosine triphosphatase activity of pulmonary arteries after intoxication with the pyrrolizidine alkaloid, monocrotaline. J Pharmacol Exp Ther 252:70–76

    CAS  PubMed  Google Scholar 

  8. Snapper JR, Lu W, Lefferts PL et al (1997) Cyclooxygenase products contribute to endothelin-induced pulmonary hypertension and altered lung mechanics in sheep. Pulm Pharmacol Ther 10:111–118

    Article  CAS  PubMed  Google Scholar 

  9. Parker TA, Grover TR, Kinsella JP et al (2005) Inhibition of 20-HETE abolishes the myogenic response during NOS antagonism in the ovine fetal pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 289(2):L261–L267

    Article  CAS  PubMed  Google Scholar 

  10. Pfister SL (2011) Role of lipoxygenase metabolites of arachidonic acid in enhanced pulmonary artery contractions of female rabbits. Hypertension 57:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park SJ, Yoo HY, Earm YE et al (2011) Role of arachidonic acid-derived metabolites in the control of pulmonary arterial pressure and hypoxic pulmonary vasoconstriction in rats. Br J Anaesth 106:31–37

    Article  CAS  PubMed  Google Scholar 

  12. Zhu D, Birks EK, Dawson CA et al (2000) Hypoxic pulmonary vasoconstriction is modified by P-450 metabolites. Am J Physiol Heart Circ Physiol 9(4):H1526–H1533

    Google Scholar 

  13. Singh TU, Choudhury S, Parida S et al (2012) Arachidonic acid inhibits Na+-K+-ATPase via cytochrome P-450, lipoxygenase and protein kinase C-dependent pathways in sheep pulmonary artery. Vascul Pharmacol 56:84–90

    Article  CAS  PubMed  Google Scholar 

  14. Bawankule DU, Sathishkumar K, Sardar KK et al (2005) BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine]-induced dilation in ovine pulmonary artery: role of sodium pump. J Pharmacol Exp Ther 314:207–213

    Article  CAS  PubMed  Google Scholar 

  15. Stasch JP, Becker EM, Alonso-alija C et al (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215

    Article  CAS  PubMed  Google Scholar 

  16. Singh TU, Kathirvel K, Choudhury S et al (2010) Eicosapentaenoic acid-induced endothelium-dependent and –independent relaxation of sheep pulmonary artery. Eur J Pharmacol 636:108–113

    Article  CAS  PubMed  Google Scholar 

  17. Grimminger F, Mayer K, Krämer HJ et al (1993) Differential vasoconstrictor potencies of free fatty acids in the lung vasculature: 2-versus 3-series prostanoid generation. J Pharmacol Exp Ther 267:259–265

    CAS  PubMed  Google Scholar 

  18. Singh TU, Garg SK, Mishra SK (2012) Evaluation of effects of eicosapentaenoic acid on Na+-K+-ATPase in sheep pulmonary artery. Hum Exp Toxicol 31(6):579–587

    Article  CAS  PubMed  Google Scholar 

  19. Tagaya E, Tamaoki J, Kawatani K et al (2001) Role of Na+-K+-ATPase in Sodium Nitroprusside-Induced Relaxation of Pulmonary Artery under Hypoxia. Respiration 68:186–191

    Article  CAS  PubMed  Google Scholar 

  20. Tamaoki J, Tagaya E, Nishimura K et al (1997) Role of Na+-K+-ATPase in cyclic GMP-mediated relaxation of canine pulmonary artery smooth muscle cells. Br J Pharmacol 122:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dey K, Rahaman SM, Chakraborti T et al (2013) Role of phospholemman and the 70 kDa inhibitor protein in regulating Na+/K+ ATPase activity in pulmonary artery smooth muscle cells under U46619 stimulation. FEBS Lett 587(21):3535–3540

    Article  CAS  PubMed  Google Scholar 

  22. Rahaman SM, Dey K, Das P et al (2014) Identification, purification and partial characterization of low molecular weight protein inhibitor of Na+/K+-ATPase from pulmonary artery smooth muscle cells. Mol Cell Biochem 393(1-2):309–317

    Article  CAS  PubMed  Google Scholar 

  23. Shaikh S, Sarkar J, Pramanik A et al (2013) Effect of m-calpain in PKCalpha-mediated proliferation of pulmonary artery smooth muscle cells by low dose of ouabain. Indian J Biochem Biophys 50:419–427

    CAS  PubMed  Google Scholar 

  24. Charles A, Dawicki DD, Oldmixon E et al (1997) Studies on the mechanism of short-term regulation of pulmonary artery endothelial cell Na/K pump activity. J Lab Clin Med 130:157–168

    Article  CAS  PubMed  Google Scholar 

  25. Mahajan P, Tabrizchi R (2012) Influence of hyperpolarization caused by high salt diet on β-adrenoceptor-mediated responses in rat pulmonary artery. J Cardiovasc Pharmacol 60:23–32

    Article  CAS  PubMed  Google Scholar 

  26. Mahajan P, Tabrizchi R (2010) Influence of endothelium on beta-adrenoceptor-mediated mechanical and electrical functions in rat pulmonary artery. Vascul Pharmacol 53:144–150

    Article  CAS  PubMed  Google Scholar 

  27. Dey K, Roy S, Ghosh B et al (2012) Role of protein kinase C in phospholemman mediated regulation of α2β1 isozyme of Na+/K+-ATPase in caveolae of pulmonary artery smooth muscle cells. Biochimie 94:991–1000

    Article  CAS  PubMed  Google Scholar 

  28. Ghosh B, Kar P, Mandal A et al (2009) Ca2+ influx mechanisms in caveolae vesicles of pulmonary smooth muscle plasma membrane under inhibition of alpha2beta1 isozyme of Na+/K+-ATPase by ouabain. Life Sci 84:139–148

    Article  CAS  PubMed  Google Scholar 

  29. Homer KL, Wanstall JC (2000) Cyclic GMP-independent relaxation of rat pulmonary artery by spermine NONOate, a diazeniumdiolate nitric oxide donor. Br J Pharmacol 13:673–682

    Article  Google Scholar 

  30. Kroigaard C, Kudryavtseva O, Dalsgaard T et al (2013) K(Ca)3.1 channel downregulation and impaired endothelium-derived hyperpolarization-type relaxation in pulmonary arteries from chronically hypoxic rats. Exp Physiol 98(4):957–969

    Article  CAS  PubMed  Google Scholar 

  31. Kroigaard C, Dalsgaard T, Simonsen U (2010) Mechanisms underlying epithelium-dependent relaxation in rat bronchioles: analogy to EDHF-type relaxation in rat pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 298:L531–L542

    Article  CAS  PubMed  Google Scholar 

  32. Meharg JV, McGowan-Jordan J, Charles A et al (1993) Hydrogen peroxide stimulates sodium-potassium pump activity in cultured pulmonary arterial endothelial cells. Am J Physiol 265:L613–L621

    CAS  PubMed  Google Scholar 

  33. Urner M, Herrmann IK, Booy C et al (2012) Effect of hypoxia and dexamethasone on inflammation and ion transporter function in pulmonary cells. Clin Exp Immunol 169:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Xu J, Ma G et al (2007) Chronic pulmonary artery occlusion increases alveolar fluid clearance in rats. J Thorac Cardiovasc Surg 134:1213–1219

    Article  PubMed  Google Scholar 

  35. John TA, Vogel SM, Sekosan M et al (2001) Reversible temperature-sensitive alterations in lung fluid balance. Shock 16:294–297

    Article  CAS  PubMed  Google Scholar 

  36. Carter EP, Wangensteen OD, Dunitz J et al (1997) Hyperoxic effects on alveolar sodium resorption and lung Na+-K+-ATPase. Am J Physiol 273:L1191–L1202

    CAS  PubMed  Google Scholar 

  37. Patel JM, Abeles AJ, Block ER (1996) Nitric oxide exposure and sulfhydryl modulation alter L-arginine transport in cultured pulmonary artery endothelial cells. Free Radic Biol Med 20:629–637

    Article  CAS  PubMed  Google Scholar 

  38. Bagrov AY, Dmitrieva RI, Fedorova OV et al (1996) Endogenous marinobufagenin-like immunoreactive substance. A possible endogenous Na, K-ATPase inhibitor with vasoconstrictor activity. Am J Hypertens 9:982–990

    Article  CAS  PubMed  Google Scholar 

  39. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7:173–189

    Article  CAS  PubMed  Google Scholar 

  40. Zhang LN, Li JX, Hao L et al (2013) Crosstalk between dopamine receptors and the Na+/K+-ATPase (review). Mol Med Rep 8:1291–1299

    CAS  PubMed  Google Scholar 

  41. Matthay MA (2014) Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 189:1301–1308

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dong M, Ding Y, Zhang M et al (2000) Image and quantity analysis of blood-gas in rabbit’s artery and Na(+)-K(+)-ATPase in their lungs during PE-SWD treated by HFJV. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 17(183-5):191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thakur Uttam Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, T.U., Parida, S., Mishra, S.K. (2016). Regulation of Na+-K+-ATPase in Pulmonary Vasculature. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_20

Download citation

Publish with us

Policies and ethics