Skip to main content

On Hausdorff Dimension of Invariant Sets for a Class of Piecewise Linear Maps

  • Conference paper
  • First Online:
Difference Equations, Discrete Dynamical Systems and Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 150))

  • 859 Accesses

Abstract

For a class of piecewise linear maps on T on [0, 1] and \(0\le a<b\le 1\), we consider the invariant set \(T_{a,b}:=\bigcap \limits _{n=0}^{\infty }T^{-n}[a,b]\). We obtain a sufficient condition under which the Hausdorff dimension of the set \(T_{a,b}\) is locally constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Alsedà, A. Falcò, On the topological dynamics and phase-locking renormalization of Lorenz-like maps. Ann. Inst. Fourier (Grenoble) 53(3), 859–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Cui, Y. Ding, Renormalization and conjugacy of piecewise linear Lorenz maps. Adv. Math. 271, 235–272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Ding, Renormalization and \(\alpha \)-limit set for expanding Lorenz map. Discrete Contin. Dyn. Syst. 29, 979–999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. K.J. Falconer, Fractal Geometry-Mathematical Foundations and Applications (Wiley, New York, 1990)

    Google Scholar 

  5. L. Flatto, J.C. Lagarias, The lap-counting function for linear mod one transformations. I. Explicit formulas and renormalizability. Ergod. Theory Dyn. Syst. 16, 451–491 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Glendinning, C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps. Physica D 62, 22–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.H. Hubbard, C.T. Sparrow, The classification of topologically expansive Lorenz maps. Comm. Pure Appl. Math. 43, 431–443 (1990)

    Google Scholar 

  8. R. Labarca, C.G. Moreira, Essential dynamics for Lorenz maps on the real line and the lexicographical world. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 683–694 (2006)

    Google Scholar 

  9. M. Lothaire, Algebraic Combinatorics on Words (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  10. R.S. Mackay, C.T. Tresser, Some flesh on the skeleton: the bifurcation structure of bimodal maps. Phys. D 27, 412-422 (1987)

    Google Scholar 

  11. J. Milnor, W. Thurston, On Iterated Maps of the Interval, Lecture Notes in Mathematics, vol. 1342 (Springer, Berlin, 1988)

    Google Scholar 

  12. J. Nilsson, On numbers badly approximable by dyadic rationals. Isr. J. Math. 171, 93–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Nilsson, The fine structure of dyadically badly approximable numbers. arXiv:1002.4614 (2010)

  14. M.R. Palmer, On the classification of measure preserving transformations of Lebesgue spaces, Ph.D. thesis, University of Warwick, 1979

    Google Scholar 

  15. W. Parry, On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Parry, Symbolic dynamics and transformations of the unit interval. Trans. Am. Math. Soc. 122, 368–378 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Parry, The Lorenz attractor and a related population model. in Ergodic theory (Proceedings Conference, Mathematical), (Forschungsinst., Oberwolfach, 1978), Lecture Notes in Mathematics, vol. 729 (Springer, Berlin, 1979), pp. 169–187

    Google Scholar 

  18. D. Rand, The topological classification of Lorenz attractors. Math. Proc. Camb. Philos. Soc. 83, 451–460 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Silva, J. Sousa Ramos, Topological invariants and renormalization of Lorenz maps. Physica D 162, 233–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Urbanski, On Hausdorff dimension of invariant sets for expanding maps of a circle. Ergod. Theory Dyn. Syst. 6, 295–309 (1986)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China, No. 11401445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ding, Y., Hu, H., Yu, Y. (2015). On Hausdorff Dimension of Invariant Sets for a Class of Piecewise Linear Maps. In: Bohner, M., Ding, Y., Došlý, O. (eds) Difference Equations, Discrete Dynamical Systems and Applications. Springer Proceedings in Mathematics & Statistics, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-319-24747-2_5

Download citation

Publish with us

Policies and ethics