Skip to main content

Homological Shape Analysis Through Discrete Morse Theory

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Homology and persistent homology are fundamental tools for shape analysis and understanding that recently gathered a lot of interest, in particular for analyzing multidimensional data. In this context, discrete Morse theory, a combinatorial counterpart of smooth Morse theory, provides an excellent basis for reducing computational complexity in homology detection. A discrete Morse complex, computed over a given complex discretizing a shape, drastically reduces the number of cells of the latter while maintaining the same homology. Here, we consider the problem of shape analysis through discrete Morse theory, and we review and analyze algorithms for computing homology and persistent homology based on such theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agoston, M.K.: Computer Graphics and Geometric Modeling: Mathematics. Springer, London (2005)

    MATH  Google Scholar 

  2. Alexandroff, P., Hopf, H.: Topologie i, vol. 1035. Springer, Berlin (1935)

    Book  MATH  Google Scholar 

  3. Artin, M.: Algebra. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  4. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans. Vis. Comput. Graph. 16 (6), 1251–1260 (2010)

    Article  Google Scholar 

  5. Benedetti, B., Lutz, F.H.: Random discrete Morse theory and a new library of triangulations. Exp. Math. 23 (1), 66–94 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boissonnat, J.D., Dey, T.K., Maria, C.: The compressed annotation matrix: an efficient data structure for computing persistent cohomology. In: Algorithms–ESA 2013, Sophia Antipolis, pp. 695–706. Springer (2013)

    Google Scholar 

  7. Boltcheva, D., Canino, D., Merino Aceituno, S., Léon, J.C., De Floriani, L., Hétroy, F.: An iterative algorithm for homology computation on simplicial shapes. Comput. Aided Des. 43 (11), 1457–1467 (2011)

    Article  Google Scholar 

  8. Bremer, P.T., Hamann, B., Edelsbrunner, H., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10 (4), 385–396 (2004)

    Article  Google Scholar 

  9. Canino, D., De Floriani, L., Weiss, K.: IA*: an adjacency-based representation for non-manifold simplicial shapes in arbitrary dimensions. Comput. Graph. 35 (3), 747–753 (2011)

    Article  Google Scholar 

  10. Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.J.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76 (1), 1–12 (2008)

    Article  Google Scholar 

  11. Cazals, F., Chazal, F., Lewiner, T.: Molecular shape analysis based upon the Morse-Smale complex and the Connolly function. In: Proceedings of 9th Annual Symposium on Computational Geometry, pp. 351–360. ACM Press, New York (2003)

    Google Scholar 

  12. Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68 (5), 451–471 (2006)

    Article  Google Scholar 

  13. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: Information Processing in Medical Imaging, pp. 386–397. Springer, Berlin/New York (2009)

    Google Scholar 

  14. Čomić, L., De Floriani, L., Iuricich, F.: Simplification operators on a dimension-independent graph-based representation of Morse complexes. In: Hendriks, C.L.L., Borgefors, G., Strand R. (eds.) ISMM. Lecture Notes in Computer Science, vol. 7883, pp. 13–24. Springer, Berlin/New York (2013)

    Google Scholar 

  15. Čomić, L., De Floriani, L., Iuricich, F., Fugacci, U.: Topological modifications and hierarchical representation of cell complexes in arbitrary dimensions. Comput. Vis. Image Underst. 121, 2–12 (2014)

    Article  Google Scholar 

  16. Connolly, M.L.: Measurement of protein surface shape by solid angles. J. Mol. Graph. 4 (1), 3–6 (1986)

    Article  MathSciNet  Google Scholar 

  17. De Floriani, L., Hui, A.: Data structures for simplicial complexes: an analysis and a comparison. In: Desbrun, M., Pottmann, H. (eds.) Proceedings of 3rd Eurographics Symposium on Geometry Processing. ACM International Conference on Proceeding Series, vol. 255, pp. 119–128. Eurographics Association, Aire-la-Ville (2005)

    Google Scholar 

  18. Dequeant, M.L., Ahnert, S., Edelsbrunner, H., Fink, T.M., Glynn, E.F., Hattem, G., Kudlicki, A., Mileyko, Y., Morton, J., Mushegian, A.R., et al.: Comparison of pattern detection methods in microarray time series of the segmentation clock. PLoS One 3 (8), e2856 (2008)

    Article  Google Scholar 

  19. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. arXiv preprint arXiv:1208.5018 (2012)

    Google Scholar 

  20. Dey, T.K., Hirani, A.N., Krishnamoorthy, B., Smith, G.: Edge contractions and simplicial homology. arXiv preprint arXiv:1304.0664 (2013)

    Google Scholar 

  21. Dłotko, P., Kaczynski, T., Mrozek, M., Wanner, T.: Coreduction homology algorithm for regular cw-complexes. Discret. Comput. Geom. 46 (2), 361–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dłotko, P., Wagner, H.: Simplification of complexes of persistent homology computations. Homol. Homotopy Appl. 16 (1), 49–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  24. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discret. Comput. Geom. 28 (4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fellegara, R., Iuricich, F., De Floriani, L., Weiss, K.: Efficient computation and simplification of discrete Morse decompositions on triangulated terrains. In: 22th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2014, Dallas, 4–7 Nov 2014 (2014)

    Google Scholar 

  27. Forman, R.: Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228, 629–681 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fugacci, U., Iuricich, F., De Floriani, L.: Efficient computation of simplicial homology through acyclic matching. In: Proceedings of 5th International Workshop on Computational Topology in Image Context (CTIC 2014), Timisoara (2014)

    Google Scholar 

  30. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45 (1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28 (10), 959–969 (2012)

    Article  Google Scholar 

  32. Gyulassy, A., Bremer, P.T., Pascucci, V.: Computing Morse-Smale complexes with accurate geometry. IEEE Trans. Vis. Comput. Graph. 18 (12), 2014–2022 (2012). doi:10.1109/TVCG.2012.209

    Article  Google Scholar 

  33. Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practical approach to Morse-Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14 (6), 1619–1626 (2008)

    Article  Google Scholar 

  34. Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: Practical considerations in Morse-Smale complex computation. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications, Mathematics and Visualization, pp. 67–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  35. Gyulassy, A., Kotava, N., Kim, M., Hansen, C., Hagen, H., Pascucci, V.: Direct feature visualization using Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. 18 (9), 1549–1562 (2012)

    Article  Google Scholar 

  36. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found. Comput. Math. 14 (1), 151–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V., Wagner, H., Juda, M., Dłotko, P.: The efficiency of a homology algorithm based on discrete Morse theory and coreductions. In: Proceedings of 3rd International Workshop on Computational Topology in Image Context (CTIC 2010), Cádiz. Image A, vol. 1, pp. 41–47 (2010)

    Google Scholar 

  38. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge/New York (2002)

    MATH  Google Scholar 

  39. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14 (4), 435–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26 (3), 221–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lewis, R.H., Zomorodian, A.J.: Multicore homology via Mayer Vietoris. arXiv preprint arXiv:1407.2275 (2014)

    Google Scholar 

  42. Lundell, A.T., Weingram, S.: The topology of CW complexes. Van Nostrand Reinhold Company, New York (1969)

    Book  MATH  Google Scholar 

  43. Martin, S., Thompson, A., Coutsias, E.A., Watson, J.P.: Topology of cyclo-octane energy landscape. J. Chem. Phys. 132 (23), 234115 (2010). doi:10.1063/1.3445267

    Article  Google Scholar 

  44. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    Book  MATH  Google Scholar 

  45. Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discret. Comput. Geom. 50 (2), 330–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mrozek, M., Batko, B.: Coreduction homology algorithm. Discret. Comput. Geom. 41 (1), 96–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 60 (10), 2812–2833 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Munkres, J.: Elements of Algebraic Topology. Advanced Book Classics. Perseus Books, New York (1984)

    MATH  Google Scholar 

  49. Nanda, V.: The Perseus software project for rapid computation of persistent homology. http://www.math.rutgers.edu/~vidit/perseus/index.html

  50. Rieck, B., Leitte, H.: Structural analysis of multivariate point clouds using simplicial chains. Comput. Graph. Forum 33 (8), 28–37 (2014). doi:10.1111/cgf.12398

    Article  Google Scholar 

  51. Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Trans. Vis. Comput. Graph. 18 (12), 2382–2391 (2012). doi:10.1109/TVCG.2012.248

    Article  Google Scholar 

  52. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33 (8), 1646–1658 (2011)

    Article  Google Scholar 

  53. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, London (1982)

    MATH  Google Scholar 

  54. Shivashankar, N., Maadasamy, S., Natarajan, V.: Parallel computation of 2D Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. 18 (10), 1757–1770 (2012)

    Article  Google Scholar 

  55. Shivashankar, N., Natarajan, V.: Parallel computation of 3D Morse-Smale complexes. Comput. Graph. Forum 31 (3), 965–974 (2012)

    Article  Google Scholar 

  56. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7, 339–358 (2007). doi:10.2140/agt.2007.7.339

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, Y., Agarwal, P.K., Brown, P.H.E., Rudolph, J.: Coarse and reliable geometric alignment for protein docking. In: Proceedings of Pacific Symposium on Biocomputing, Hawaii, vol. 10, pp. 65–75 (2005)

    Google Scholar 

  58. Weiss, K., De Floriani, L., Fellegara, R., Velloso, M.: The PR-star octree: a spatio-topological data structure for tetrahedral meshes. In: GIS, Chicago, pp. 92–101 (2011)

    Google Scholar 

  59. Weiss, K., Iuricich, F., Fellegara, R., De Floriani, L.: A primal/dual representation for discrete Morse complexes on tetrahedral meshes. Comput. Graph. Forum 32 (3), 361–370 (2013)

    Article  Google Scholar 

  60. Van de Weygaert, R., Vegter, G., Edelsbrunner, H., Jones, B.J., Pranav, P., Park, C., Hellwing, W.A., Eldering, B., Kruithof, N., Bos, E., et al.: Alpha, Betti and the megaparsec universe: on the topology of the cosmic web. In: Transactions on Computational Science XIV, pp. 60–101. Springer, Berlin/New York (2011). http://arxiv.org/abs/1306.3640

  61. Zomorodian, A.J.: Topology for Computing, vol. 16. Cambridge University Press, Cambridge/New York (2005)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the US National Science Foundation under grant number IIS-1116747 and by the University of Genova through PRA 2013. The authors wish to thank Davide Bolognini, Emanuela De Negri and Maria Evelina Rossi for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila De Floriani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

De Floriani, L., Fugacci, U., Iuricich, F. (2016). Homological Shape Analysis Through Discrete Morse Theory. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_9

Download citation

Publish with us

Policies and ethics