Skip to main content

Licensing of Replication Origins

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes

Abstract

All living organisms need to duplicate their genetic material prior to cell division in order to maintain genomic-stability. Cells have evolved sophisticated DNA replication mechanisms to ensure that this process is as faithful as possible. Eukaryotic initiation of DNA replication is a two-step process, where the replicative DNA helicase becomes loaded onto DNA to license DNA replication during late M-phase of the cell cycle prior to helicase-activation in S-phase. Importantly, helicase loading is entirely blocked in S-phase, which is a crucial regulatory mechanism that hinders re-replication of DNA and is crucial for genomic stability. Moreover, multiple copies of the replicative helicase become loaded at each origin to serve as backup-helicases in case a fork becomes terminally arrested. For these reasons it is imperative that helicase loading is as efficient as possible. MCM2–7 represent the core of the replicative helicase, which becomes loaded in an ATP-hydrolysis-dependent process as a double-hexamer onto double-stranded DNA. Current data suggest a model where ORC, Cdc6, and Cdt1 load in a stepwise process the MCM2–7 double-hexamer onto DNA. In this review we discuss the emerging mechanism of ATP-hydrolysis-driven helicase loading, the regulation of this process, and the structure and function of the MCM2–7 double-hexamer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonard AC, Mechali M. DNA replication origins. Cold Spring Harb Perspect Biol. 2013;5(10):a010116.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128–34.

    Article  PubMed  CAS  Google Scholar 

  3. Liang C, Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 1997;11(24):3375–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Weinreich M, Liang C, Stillman B. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A. 1999;96(2):441–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Samel SA, Fernandez-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 2014;28(15):1653–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Hesketh EL, Parker-Manuel RP, Chaban Y, Satti R, Coverley D, Orlova EV, et al. DNA induces conformational changes in a recombinant human minichromosome maintenance complex. J Biol Chem. 2015;290(12):7973–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31(2):287–93.

    Article  PubMed  CAS  Google Scholar 

  8. Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404(6778):625–8.

    Article  PubMed  CAS  Google Scholar 

  9. Maiorano D, Moreau J, Mechali M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature. 2000;404(6778):622–5.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, et al. An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol Cell. 2013;50(4):577–88.

    Article  PubMed  CAS  Google Scholar 

  11. Randell JC, Bowers JL, Rodriguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell. 2006;21(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  12. Sun J, Evrin C, Samel SA, Fernandez-Cid A, Riera A, Kawakami H, et al. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol. 2013;20(8):944–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Evrin C, Fernandez-Cid A, Zech J, Herrera MC, Riera A, Clarke P, et al. In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2-7 hexamer dimerization. Nucleic Acids Res. 2013;41(5):3162–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Gambus A, Khoudoli GA, Jones RC, Blow JJ. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem. 2011;286(13):11855–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106(48):20240–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Diffley JF. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 1996;10(22):2819–30.

    Article  PubMed  CAS  Google Scholar 

  18. Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 2007;21(5):497–518.

    Article  PubMed  CAS  Google Scholar 

  19. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, et al. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev. 2014;28(20):2291–303.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103(27):10236–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8(4):358–66.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol. 2013;5(12):a010371.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519(7544):431–5.

    Article  PubMed  CAS  Google Scholar 

  25. Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999;9(1):27–43.

    PubMed  CAS  Google Scholar 

  26. Erzberger JP, Berger JM. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct. 2006;35:93–114.

    Article  PubMed  CAS  Google Scholar 

  27. Lenzen CU, Steinmann D, Whiteheart SW, Weis WI. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell. 1998;94(4):525–36.

    Article  PubMed  CAS  Google Scholar 

  28. Iyer LM, Leipe DD, Koonin EV, Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol. 2004;146(1-2):11–31.

    Article  PubMed  CAS  Google Scholar 

  29. Skarstad K, Katayama T. Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol. 2013;5(4):a012922.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol. 2002;12(1):123–33.

    Article  PubMed  CAS  Google Scholar 

  31. Rowley A, Cocker JH, Harwood J, Diffley JF. Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J. 1995;14(11):2631–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Duncker BP, Chesnokov IN, McConkey BJ. The origin recognition complex protein family. Genome Biol. 2009;10(3):214.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Romanowski P, Madine MA, Rowles A, Blow JJ, Laskey RA. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr Biol. 1996;6(11):1416–25.

    Article  PubMed  CAS  Google Scholar 

  34. Mendez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol. 2000;20(22):8602–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Bell SP, Kobayashi R, Stillman B. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science. 1993;262(5141):1844–9.

    Article  PubMed  CAS  Google Scholar 

  36. Prasanth SG, Shen Z, Prasanth KV, Stillman B. Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A. 2010;107(34):15093–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Pak DT, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr J, et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell. 1997;91(3):311–23.

    Article  PubMed  CAS  Google Scholar 

  38. Prasanth SG, Prasanth KV, Stillman B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science. 2002;297(5583):1026–31.

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki T, Gilbert DM. The many faces of the origin recognition complex. Curr Opin Cell Biol. 2007;19(3):337–43.

    Article  PubMed  CAS  Google Scholar 

  40. Chesnokov IN. Multiple functions of the origin recognition complex. Int Rev Cytol. 2007;256:69–109.

    Article  PubMed  CAS  Google Scholar 

  41. Huang Z, Zang K, Reichardt LF. The origin recognition core complex regulates dendrite and spine development in postmitotic neurons. J Cell Biol. 2005;170(4):527–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Clarey MG, Erzberger JP, Grob P, Leschziner AE, Berger JM, Nogales E, et al. Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol. 2006;13(8):684–90.

    Article  PubMed  CAS  Google Scholar 

  43. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Chen Z, Speck C, Wendel P, Tang C, Stillman B, Li H. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2008;105(30):10326–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Sun J, Kawakami H, Zech J, Speck C, Stillman B, Li H. Cdc6-induced conformational changes in ORC bound to origin DNA revealed by cryo-electron microscopy. Structure. 2012;20(3):534–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Clarey MG, Botchan M, Nogales E. Single particle EM studies of the Drosophila melanogaster origin recognition complex and evidence for DNA wrapping. J Struct Biol. 2008;164(3):241–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Bleichert F, Balasov M, Chesnokov I, Nogales E, Botchan MR, Berger JM. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation. eLife. 2013;2, e00882.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Bleichert F, Botchan MR, Berger JM. Crystal structure of the eukaryotic origin recognition complex. Nature. 2015;519(7543):321–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Chesnokov I, Remus D, Botchan M. Functional analysis of mutant and wild-type Drosophila origin recognition complex. Proc Natl Acad Sci U S A. 2001;98(21):11997–2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Klemm RD, Austin RJ, Bell SP. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell. 1997;88(4):493–502.

    Article  PubMed  CAS  Google Scholar 

  51. Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J. Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proc Natl Acad Sci U S A. 2005;102(1):69–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16(6):967–78.

    Article  PubMed  CAS  Google Scholar 

  53. Liu S, Balasov M, Wang H, Wu L, Chesnokov IN, Liu Y. Structural analysis of human Orc6 protein reveals a homology with transcription factor TFIIB. Proc Natl Acad Sci U S A. 2011;108(18):7373–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Gillespie PJ, Blow JJ. Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res. 2000;28(2):472–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Ghosh S, Vassilev AP, Zhang J, Zhao Y, DePamphilis ML. Assembly of the human origin recognition complex occurs through independent nuclear localization of its components. J Biol Chem. 2011;286(27):23831–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Thomae AW, Baltin J, Pich D, Deutsch MJ, Ravasz M, Zeller K, et al. Different roles of the human Orc6 protein in the replication initiation process. Cell Mol Life Sci. 2011;68(22):3741–56.

    Article  PubMed  CAS  Google Scholar 

  57. Hartwell LH. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol. 1973;115(3):966–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Bell SP, Mitchell J, Leber J, Kobayashi R, Stillman B. The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell. 1995;83(4):563–8.

    Article  PubMed  CAS  Google Scholar 

  59. Muzi-Falconi M, Kelly TJ. Orp1, a member of the Cdc18/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex. Proc Natl Acad Sci U S A. 1995;92(26):12475–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Wang B, Feng L, Hu Y, Huang SH, Reynolds CP, Wu L, et al. The essential role of Saccharomyces cerevisiae CDC6 nucleotide-binding site in cell growth, DNA synthesis, and Orc1 association. J Biol Chem. 1999;274(12):8291–8.

    Article  PubMed  CAS  Google Scholar 

  61. Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem. 2007;282(16):11705–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Liu J, Smith CL, DeRyckere D, DeAngelis K, Martin GS, Berger JM. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol Cell. 2000;6(3):637–48.

    Article  PubMed  CAS  Google Scholar 

  63. Perkins G, Drury LS, Diffley JF. Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J. 2001;20(17):4836–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Bochman ML, Schwacha A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev. 2009;73(4):652–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106(3):365–85.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Costa A, Onesti S. Structural biology of MCM helicases. Crit Rev Biochem Mol Biol. 2009;44(5):326–42.

    Article  PubMed  CAS  Google Scholar 

  67. Chong JP, Mahbubani HM, Khoo CY, Blow JJ. Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature. 1995;375(6530):418–21.

    Article  PubMed  CAS  Google Scholar 

  68. Pacek M, Walter JC. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 2004;23(18):3667–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Shechter D, Ying CY, Gautier J. DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process. J Biol Chem. 2004;279(44):45586–93.

    Article  PubMed  CAS  Google Scholar 

  70. Labib K, Tercero JA, Diffley JF. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science. 2000;288(5471):1643–7.

    Article  PubMed  CAS  Google Scholar 

  71. Aparicio OM, Weinstein DM, Bell SP. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell. 1997;91(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  72. Davey MJ, Indiani C, O'Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem. 2003;278(7):4491–9.

    Article  PubMed  CAS  Google Scholar 

  73. Schwacha A, Bell SP. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell. 2001;8(5):1093–104.

    Article  PubMed  CAS  Google Scholar 

  74. Coster G, Frigola J, Beuron F, Morris EP, Diffley JF. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell. 2014;55(5):666–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Bochman ML, Bell SP, Schwacha A. Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol. 2008;28(19):5865–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247–58.

    Article  PubMed  CAS  Google Scholar 

  77. Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, et al. Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell. 2010;40(3):353–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Sheu YJ, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463(7277):113–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Frigola J, Remus D, Mehanna A, Diffley JF. ATPase-dependent quality control of DNA replication origin licensing. Nature. 2013;495(7441):339–43.

    Article  PubMed  CAS  Google Scholar 

  80. Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, et al. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife. 2014;3, e03273.

    PubMed Central  PubMed  Google Scholar 

  81. Hofmann JF, Beach D. cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J. 1994;13(2):425–34.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Cook JG, Chasse DA, Nevins JR. The regulated association of Cdt1 with minichromosome maintenance proteins and Cdc6 in mammalian cells. J Biol Chem. 2004;279(10):9625–33.

    Article  PubMed  CAS  Google Scholar 

  83. Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol. 2002;4(3):198–207.

    Article  PubMed  CAS  Google Scholar 

  84. Liu C, Wu R, Zhou B, Wang J, Wei Z, Tye BK, et al. Structural insights into the Cdt1-mediated MCM2-7 chromatin loading. Nucleic Acids Res. 2012;40(7):3208–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Takara TJ, Bell SP. Multiple Cdt1 molecules act at each origin to load replication-competent Mcm2-7 helicases. EMBO J. 2011;30(24):4885–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Wei Z, Liu C, Wu X, Xu N, Zhou B, Liang C, et al. Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J Biol Chem. 2010;285(17):12469–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Khayrutdinov BI, Bae WJ, Yun YM, Lee JH, Tsuyama T, Kim JJ, et al. Structure of the Cdt1 C-terminal domain: conservation of the winged helix fold in replication licensing factors. Protein Sci. 2009;18(11):2252–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, et al. Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature. 2004;430(7002):913–7.

    Article  PubMed  CAS  Google Scholar 

  89. Caillat C, Perrakis A. Cdt1 and geminin in DNA replication initiation. Subcell Biochem. 2012;62:71–87.

    Article  PubMed  CAS  Google Scholar 

  90. Yanagi K, Mizuno T, You Z, Hanaoka F. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 2002;277(43):40871–80.

    Article  PubMed  CAS  Google Scholar 

  91. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 2000;290(5500):2309–12.

    Article  PubMed  CAS  Google Scholar 

  92. Tada S, Li A, Maiorano D, Mechali M, Blow JJ. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol. 2001;3(2):107–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Liontos M, Koutsami M, Sideridou M, Evangelou K, Kletsas D, Levy B, et al. Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res. 2007;67(22):10899–909.

    Article  PubMed  CAS  Google Scholar 

  94. McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998;93(6):1043–53.

    Article  PubMed  CAS  Google Scholar 

  95. Lutzmann M, Maiorano D, Mechali M. A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J. 2006;25(24):5764–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Saxena S, Yuan P, Dhar SK, Senga T, Takeda D, Robinson H, et al. A dimerized coiled-coil domain and an adjoining part of geminin interact with two sites on Cdt1 for replication inhibition. Mol Cell. 2004;15(2):245–58.

    Article  PubMed  CAS  Google Scholar 

  97. Siddiqui K, On KF, Diffley JF. Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol. 2013;5(9):012930.

    Article  CAS  Google Scholar 

  98. Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol. 2014;30:104–9.

    Article  PubMed  CAS  Google Scholar 

  99. Alver RC, Chadha GS, Blow JJ. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair. 2014;19:182–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Wu M, Lu W, Santos RE, Frattini MG, Kelly TJ. Geminin inhibits a late step in the formation of human pre-replicative complexes. J Biol Chem. 2014;289(44):30810–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell. 2015;161(3):513–25.

    Article  PubMed  CAS  Google Scholar 

  102. Evrin C, Fernandez-Cid A, Riera A, Zech J, Clarke P, Herrera MC, et al. The ORC/Cdc6/MCM2-7 complex facilitates MCM2-7 dimerization during prereplicative complex formation. Nucleic Acids Res. 2014;42(4):2257–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Wu R, Wang J, Liang C. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex. J Cell Sci. 2012;125(Pt 1):209–19.

    Article  PubMed  CAS  Google Scholar 

  104. Chen S, de Vries MA, Bell SP. Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. Genes Dev. 2007;21(22):2897–907.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Klemm RD, Bell SP. ATP bound to the origin recognition complex is important for preRC formation. Proc Natl Acad Sci U S A. 2001;98(15):8361–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Perkins G, Diffley JF. Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol Cell. 1998;2(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  107. Herbig U, Marlar CA, Fanning E. The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. Mol Biol Cell. 1999;10(8):2631–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JF. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 2014;33(6):605–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Kang S, Warner MD, Bell SP. Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell. 2014;55(5):655–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Ying CY, Gautier J. The ATPase activity of MCM2-7 is dispensable for pre-RC assembly but is required for DNA unwinding. EMBO J. 2005;24(24):4334–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Yardimci H, Walter JC. Prereplication-complex formation: a molecular double take? Nat Struct Mol Biol. 2014;21(1):20–5.

    Article  PubMed  CAS  Google Scholar 

  112. Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell. 2015;58(3):483–94.

    Article  PubMed  CAS  Google Scholar 

  113. Fletcher RJ, Shen J, Gomez-Llorente Y, Martin CS, Carazo JM, Chen XS. Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM. J Biol Chem. 2005;280(51):42405–10.

    Article  PubMed  CAS  Google Scholar 

  114. Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, et al. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem. 2013;288(21):14926–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 1997;11(24):3365–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A. 1997;94(7):3151–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Nick Kennedy, Almut Caspary, and members of the Speck laboratory for helpful discussions and critical reading of the manuscript. Work in the Speck laboratory is supported by the Biotechnology and Biological Sciences Research Council (BBSRC), UK. The authors declare that they have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riera, A., Speck, C. (2016). Licensing of Replication Origins. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_10

Download citation

Publish with us

Policies and ethics