Skip to main content

Turbulence Resolving Flow Simulations of a Francis Turbine with a Commercial CFD Code

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

Transient flow simulations of a Francis turbine in part load conditions using hybrid RANS-LES turbulence models are presented. In the draft tube a rotating low pressure zone—the vortex rope phenomenon—arises, which leads to very complex flow phenomena. A detailed resolution of the flow in space and time is leading to large computational effort.

For the flow simulations the commercial CFD code Ansys CFX version 16.0 is used, as the parallel performance especially for this application has improved. Two hybrid RANS-LES turbulence models, the Scale Adaptive Simulation (SAS) and Detached Eddy Simulation (DES) are applied. To have a very good resolution of turbulence, meshes in the range of 50 to 300 million mesh nodes are investigated running on up to more than 2000 cores in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansys CFX-Solver, Release 16.0: CFX-Solver Manager User’s Guide (2015)

    Google Scholar 

  2. Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, isotropic turbulence. J. Fluid Mech. 48(Part 2), 273–337 (1971)

    Article  Google Scholar 

  3. Egorov, Y., Menter, F.R.: Development and application of SST-SAS turbulence model in the DESIDER project. In: Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 97, pp. 261–270. Springer, Heidelberg (2008)

    Google Scholar 

  4. Egorov, Y., Menter, F.R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to aerodynamic flows. J. Flow Turbul. Combust. 85(1), 139–165 (2010)

    Google Scholar 

  5. Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 31, 431–449 (1999)

    Article  Google Scholar 

  6. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

  7. Krappel, T., Ruprecht, A., Riedelbauch, S.: Flow simulation of a Francis turbine using the SAS turbulence model. In: High Performance Computing in Science and Engineering ’13. Springer, Berlin (2013)

    Chapter  Google Scholar 

  8. Krappel, T., Ruprecht, A., Riedelbauch, S., Jester-Zuerker, R., Jung, A.: Investigation of Francis turbine part load instabilities using flow simulations with a Hybrid RANS-LES turbulence model, In: 27th IAHR Symposium on Hydraulic Machinery and Systems, Montreal (2014)

    Book  Google Scholar 

  9. Krappel, T., Ruprecht, A., Riedelbauch, S.: Flow simulations of a Francis turbines using hybrid RANS-LES turbulence models. In: High Performance Computing in Science and Engineering ’14. Springer, Berlin (2015)

    Google Scholar 

  10. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 269–289 (1994)

    Article  Google Scholar 

  11. Menter, F.R.: Best Practice: Scale-Resolving Simulations in ANSYS CFD Version 1.0 ANSYS Germany GmbH (April 2012)

    Google Scholar 

  12. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. J. Flow Turbul. Combust. 85(1), 113–138 (2010)

    Article  Google Scholar 

  13. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. In: Turbulence, Heat and Mass Transfer, vol. 4, pp. 625–632. Begell House, New York (2003)

    Google Scholar 

  14. Menter, F.R., Schütze, J., Gritskevich, M.: Global vs. zonal approaches in hybrid RANS-LES turbulence modelling. In: Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 117, pp. 15–28. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  Google Scholar 

  16. Piomelli, U., Chasnov, J.: Large-eddy simulations: theory and applications. In: Turbulence and Transition Modelling. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  17. Rotta, J.C.: Turbulente Strömungen. BG Teubner, Stuttgart (1972)

    Book  Google Scholar 

  18. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  19. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  Google Scholar 

  20. Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol. 65, pp 239–254. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The research leading to the results presented in this paper is part of a common research project of the Institute of Fluid Mechanics and Hydraulic Machinery, Voith Hydro Holding GmbH & Co. KG and Ansys Germany GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Krappel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Krappel, T., Ruprecht, A., Riedelbauch, S. (2016). Turbulence Resolving Flow Simulations of a Francis Turbine with a Commercial CFD Code. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_27

Download citation

Publish with us

Policies and ethics