Skip to main content

Time-Dependent Spectral Shifts in Tryptophan Fluorescence: Bridging Experiments with Molecular Dynamics Simulations

  • Chapter
  • First Online:
Reviews in Fluorescence 2015

Part of the book series: Reviews in Fluorescence ((RFLU,volume 8))

Abstract

Molecular dynamics (MD) simulations are widely used to model protein motions. Although the time resolution of MD simulations is virtually unlimited, simulated MD is seldom compared with experimental data on the picosecond time scale because few experimental techniques can probe molecular vibrations in the frequency range between 300 MHz and 300 GHz. Time-dependent spectral shift (TDSS, also known as dynamic Stokes shift) in fluorescence emission from solvatochromic dyes has long been used to study relaxation dynamics of polar solvents on the picosecond time scale. This chapter reviews the use of TDSS in connection with protein dynamics. Different methods of calculating TDSS from the non-equilibrium and equilibrium MD are compared and the limits of their applicability are defined. Methods for separating the contributions of water and protein to TDSS are considered. Two relaxation modes of bulk water are described and their effects on the TDSS in proteins are examined. The rates of water relaxation near interfaces and inside protein pockets are evaluated. A method for identifying conformational changes responsible for the TDSS on different time scales is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PAJ (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  2. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IWE, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-hydrogen empirical potential for molecular modeling and dynamics studies of proteins using the CHARMM22 force field. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  3. Scott WRP, Huenenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krueger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  4. Palmer AG III (2001) NMR probes of molecular dynamics: overview and comparison with other techniques. Annu Rev Biophys Biomol Struct 30:129–155

    Article  CAS  PubMed  Google Scholar 

  5. Banyai DR, Murakhtina T, Sebastiani D (2010) NMR chemical shifts as a tool to analyze first principles molecular dynamics simulations in condensed phases: the case of liquid water. Magn Reson Chem 48:S56–S60

    Article  CAS  PubMed  Google Scholar 

  6. Parkesh R, Fountain M, Disney MD (2011) NMR spectroscopy and molecular dynamics simulation of r(CCGCUGCGG)2 reveal a dynamic UU internal loop found in myotonic dystrophy type 1. Biochemistry 50:599–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fersht AR, Daggett V (2002) Protein folding and unfolding at atomic resolution. Cell 108:1–20

    Article  Google Scholar 

  8. Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57–83

    Article  CAS  PubMed  Google Scholar 

  9. Bolhuis PG (2009) Two-state protein folding kinetics through all-atom molecular dynamics based sampling. Front Biosci 14:2801–2828

    Article  CAS  Google Scholar 

  10. Deng Y, Roux BJ (2009) Computations of standard binding free energies with molecular dynamics simulations. Phys Chem B 113:2234–2246

    Article  CAS  Google Scholar 

  11. Landau LD, Lifschitz EM (1977) Quantum mechanics (non-relativistic theory), 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  12. Gordon JP, Zeiger HJ, Townes CH (1955) The maser – New type of microwave amplifier, frequency standard, and spectrometer. Phys Rev 99:1264–1274

    Article  CAS  Google Scholar 

  13. Gordon JP, Zeiger HJ, Townes CH (1954) Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys Rev 95:282–284

    Article  CAS  Google Scholar 

  14. Dennison DM, Uhlenbeck GE (1932) The two-minima problem and the ammonia molecule. Phys Rev 41:313–321

    Article  CAS  Google Scholar 

  15. Rosen N, Morse PM (1932) On the vibrations of polyatomic molecules. Phys Rev 42:210–217

    Article  CAS  Google Scholar 

  16. Ware WR, Chow P, Lee SK (1968) Time-resolved nanosecond emission spectroscopy: spectral shifts due to solvent-solute relaxation. Chem Phys Lett 2:356–358

    Article  CAS  Google Scholar 

  17. Maroncelli M (1993) The dynamics of solvation in polar liquids. J Mol Liq 57:1–37

    Article  CAS  Google Scholar 

  18. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369:471–473

    Article  CAS  Google Scholar 

  19. Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited. J Phys Chem 99:17311–17337

    Article  CAS  Google Scholar 

  20. Stratt RM, Maroncelli M (1996) Nonreactive dynamics in solution: the emerging molecular view of solvation dynamics and vibrational relaxation. J Phys Chem 100:12981–12996

    Article  CAS  Google Scholar 

  21. Gardecki JA, Maroncelli M (1999) Comparison of the single-wavelength and spectral-reconstruction methods for determining the solvation-response function. J Phys Chem A 103:1187–1197

    Article  CAS  Google Scholar 

  22. Kovalenko SA, Schanz R, Senyushkina TA, Ernsting NP (2002) Femtosecond spectroscopy of P-dimethylaminocyanostilbene in solution No evidence for dual fluorescence. Phys Chem Chem Phys 4:703–707

    Article  CAS  Google Scholar 

  23. Arzhantsev S, Jin H, Baker GA, Maroncelli M (2007) Measurements of the complete solvation response in ionic liquids. J Phys Chem B 111:4978–4989

    Article  CAS  PubMed  Google Scholar 

  24. Sajadi M, Obernhuber T, Kovalenko SA, Mosquera M, Dick B, Ernsting NP (2009) Dynamic polar solvation is reported by fluorescing 4-aminophthalimide faithfully despite H-bonding. J Phys Chem A 113:44–55

    Article  CAS  PubMed  Google Scholar 

  25. Brand L, Gohlke JR (1971) Nanosecond time-resolved fluorescence spectra of a protein-dye complex. J Biol Chem 246:2317–2324

    CAS  PubMed  Google Scholar 

  26. Gafni A, DeToma RP, Manrow RE, Brand L (1977) Nanosecond decay studies of a fluorescence probe bound to apomyoglobin. Biophys J 17:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pierce DW, Boxer SG (1992) Dielectric relaxation in a protein matrix. J Phys Chem 96:5560–5566

    Article  CAS  Google Scholar 

  28. Riter RR, Edington MD, Beck WF (1996) Protein-matrix solvation dynamics in the α subunit of C-phycocyanin. J Phys Chem 100:14198–14205

    Article  CAS  Google Scholar 

  29. Jordanides XJ, Lang MJ, Song X, Fleming GR (1999) Solvation dynamics in protein environments studied by photon echo spectroscopy. J Phys Chem B 103:7995–8005

    Article  CAS  Google Scholar 

  30. Changenet-Barret P, Choma CT, Gooding EF, DeGrado WF, Hochstrasser RM (2000) Ultrafast dielectric response of proteins from dynamics stokes shifting of coumarin in calmodulin. J Phys Chem B 104:9322–9329

    Article  CAS  Google Scholar 

  31. Vincent M, Gilles AM, de la Sierra IML, Briozzo P, Barzu O, Gallay J (2000) Nanosecond fluorescence dynamic stokes shift of tryptophan in a protein matrix. J Phys Chem B 104:11286–11295

    Article  CAS  Google Scholar 

  32. Pal SK, Mandal D, Sukul D, Sen S, Bhattacharyya K (2001) Solvation dynamics of DCM in human serum albumin. J Phys Chem B 105:1438–1441

    Article  CAS  Google Scholar 

  33. Toptygin D, Savtchenko RS, Meadow ND, Brand L (2001) Homogeneous spectrally- and time-resolved fluorescence emission from single-tryptophan mutants of IIAGlc protein. J Phys Chem B 105:2043–2055

    Article  CAS  Google Scholar 

  34. Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY (2002) Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296:1700–1703

    Article  CAS  PubMed  Google Scholar 

  35. Pal SK, Peon J, Bagchi B, Zewail AH (2002) Biological water: femtosecond dynamics of macromolecular hydration. J Phys Chem B 106:12376–12395

    Article  CAS  Google Scholar 

  36. Peon J, Pal SK, Zewail AH (2002) Hydration at the surface of the protein monellin: dynamics with femtosecond resolution. Proc Natl Acad Sci U S A 99:10964–10969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mataga N, Chosrowjan H, Taniguchi S, Hamada N, Tokunaga F, Imamoto Y, Kataoka M (2003) Ultrafast photoreactions in protein nanospaces as revealed by fs fluorescence dynamics measurements on photoactive yellow protein and related systems. Phys Chem Chem Phys 5:2454–2460

    Article  CAS  Google Scholar 

  38. Lampa-Pastirk S, Beck WF (2004) Polar solvation dynamics in Zn(II)-substituted cytochrome C: diffusive sampling of the energy landscape in the hydrophobic core and solvent-contact layer. J Phys Chem B 108:16288–16294

    Article  CAS  Google Scholar 

  39. Qiu W, Zhang L, Kao Y-T, Lu W, Li T, Kim J, Sollenberger GM, Wang L, Zhong D (2005) Ultrafast hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly. J Phys Chem B 109:16901–16910

    Article  CAS  PubMed  Google Scholar 

  40. Guha S, Sahu K, Roy D, Mondal SK, Roy S, Bhattacharyya K (2005) Slow solvation dynamics at the active site of an enzyme: implications for catalysis. Biochemistry 44:8940–8947

    Article  CAS  PubMed  Google Scholar 

  41. Toptygin D, Gronenborn AM, Brand L (2006) Nanosecond relaxation dynamics of protein GB1 identified by the time-dependent Red shift in the fluorescence of tryptophan and 5-fluorotryptophan. J Phys Chem B 110:26292–26302

    Article  CAS  PubMed  Google Scholar 

  42. Qiu WH, Kao YT, Zhang LY, Yang Y, Wang LJ, Stites WE, Zhong DP, Zewail AH (2006) Protein surface hydration mapped by site-specific mutations. Proc Natl Acad Sci U S A 103:13979–13984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abbyad P, Shi XH, Childs W, McAnaney TB, Cohen BE, Boxer SG (2007) Measurement of solvation responses at multiple sites in a globular protein. J Phys Chem B 111:8269–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Halder M, Mukherjee P, Bose S, Hargrove MS, Song XY, Petrich JW (2007) Solvation dynamics in protein environments: comparison of fluorescence upconversion measurements of Coumarin 153 in monomeric hemeproteins with molecular dynamics simulations. J Chem Phys 127:055101

    Article  PubMed  Google Scholar 

  45. Li T, Hassanali AA, Kao Y-T, Zhong D, Singer SJ (2007) Hydration dynamics and time scales of coupled water-protein fluctuations. J Am Chem Soc 129:3376–3382

    Article  CAS  PubMed  Google Scholar 

  46. Zhang L, Wang L, Kao Y-T, Qiu W, Yang Y, Okobiah O, Zhong D (2007) Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci U S A 104:18461–18466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abbyad P, Childs W, Shi X, Boxer SG (2007) Dynamic stokes shift in green fluorescent protein variants. Proc Natl Acad Sci U S A 104:20189–20194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jesenska A, Sykora J, Olzynska A, Brezovsky J, Zdrahal Z, Damborsky J, Hof M (2009) Nanosecond time-dependent stokes shift at the tunnel mouth of haloalkane dehalogenases. J Am Chem Soc 131:494–501

    Article  CAS  PubMed  Google Scholar 

  49. Zhang LY, Yang Y, Kao YT, Wang LJ, Zhong DP (2009) Protein hydration dynamics and molecular mechanism of coupled water-protein fluctuations. J Am Chem Soc 131:10677–10691

    Article  CAS  PubMed  Google Scholar 

  50. Othon CM, Kwon OH, Lin MM, Zewail AH (2009) Solvation in protein (un)folding of melittin tetramer-monomer transition. Proc Natl Acad Sci U S A 106:12593–12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon O-H, Yoo TH, Othon CM, Van Deventer JA, Tirrell DA, Zewail AH (2010) Hydration dynamics at fluorinated protein surfaces. Proc Natl Acad Sci U S A 107:17101–17106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhong D, Pal SK, Zewail AH (2011) Biological water: a critique. Chem Phys Lett 503:1–11

    Article  CAS  Google Scholar 

  53. Brauns EB, Madaras ML, Coleman RS, Murphy CJ, Berg MA (1999) Measurement of local DNA reorganization on the picosecond and nanosecond time scales. J Am Chem Soc 121:11644–11649

    Article  CAS  Google Scholar 

  54. Andreatta D, Lustres JLP, Kovalenko SA, Ernsting NP, Murphy CJ, Coleman RS, Berg MA (2005) Power-law solvation dynamics in DNA over six decades in time. J Am Chem Soc 127:7270–7271

    Article  CAS  PubMed  Google Scholar 

  55. Callis PR, Burgess BK (1997) Tryptophan fluorescence shifts in proteins from hybrid simulations: an electrostatic approach. J Phys Chem B 101:9429–9432

    Article  CAS  Google Scholar 

  56. Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nilsson L, Halle B (2005) Molecular origin of time-dependent fluorescence shifts in proteins. Proc Natl Acad Sci U S A 102:13867–13872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bandyopadhyay S, Chakraborty S, Balasubramanian S, Bagchi B (2005) Sensitivity of polar solvation dynamics to the secondary structures of aqueous proteins and the role of surface exposure of the probe. J Am Chem Soc 127:4071–4075

    Article  CAS  PubMed  Google Scholar 

  59. Hassanali AA, Li TP, Zhong DP, Singer SJ (2006) A molecular dynamics study of Lys-Trp-Lys: structure and dynamics in solution following photoexcitation. J Phys Chem B 110:10497–10508

    Article  CAS  PubMed  Google Scholar 

  60. Golosov AA, Karplus M (2007) Probing polar solvation dynamics in proteins: a molecular dynamics simulation analysis. J Phys Chem B 111:1482–1490

    Article  CAS  PubMed  Google Scholar 

  61. Li T, Hassanali AA, Singer SJ (2008) Origin of slow relaxation following photoexcitation of W7 in myoglobin and the dynamics of its hydration layer. J Phys Chem B 112:16121–16134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Toptygin D, Woolf TB, Brand L (2010) Picosecond protein dynamics: the origin of the time-dependent spectral shift in the fluorescence of the single Trp in the protein GB1. J Chem Phys B 114:11323–11337

    Article  CAS  Google Scholar 

  63. Halle B, Nilsson L (2009) Does the dynamic stokes shift report on slow protein hydration dynamics? J Phys Chem B 113:8210–8213

    Article  CAS  PubMed  Google Scholar 

  64. Muino PL, Callis PR (1994) Hybrid simulations of solvation effects on electronic spectra: indoles in water. J Chem Phys 100:4093–4109

    Article  CAS  Google Scholar 

  65. Toptygin D, Brand L (2000) Spectrally- and time-resolved fluorescence emission of indole during solvent relaxation: a quantitative model. Chem Phys Lett 322:496–502

    Article  CAS  Google Scholar 

  66. We use bold typeface E to denote the electric field vector and light typeface italic E to denote energy. To avoid confusion, the magnitude of vector E is denoted as |E| rather than E

    Google Scholar 

  67. In this context the term “mean” implies averaging of the three Cartesian components of the electric field vector in the reference frame that rotates together with the fluorophore

    Google Scholar 

  68. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  69. Callis PR (1991) Molecular orbital theory of the 1Lb and 1La states of indole. J Chem Phys 95:4230–4240

    Article  CAS  Google Scholar 

  70. Pan C-P, Callis PR, Barkley MD (2006) Dependence of tryptophan emission wavelength on conformation in cyclic hexapeptides. J Phys Chem B 110:7009–7016

    Article  CAS  PubMed  Google Scholar 

  71. Landau LD, Lifschitz EM (1976) Mechanics, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  72. Maroncelli M, Fleming GR (1988) Computer simulation of the dynamics of aqueous solvation. J Chem Phys 89:5044–5069

    Article  CAS  Google Scholar 

  73. Hubbard J, Onsager L (1977) Dielectric dispersion and dielectric friction in electrolyte solutions. J Chem Phys 67:4850–4857

    Article  CAS  Google Scholar 

  74. Maroncelli M, Fleming GR (1987) Picosecond solvation dynamics of Coumarin 153: the importance of molecular aspects of solvation. J Chem Phys 86:6221–6239

    Article  CAS  Google Scholar 

  75. Castner EW, Fleming GR, Bagchi B, Maroncelli M (1988) The dynamics of polar solvation: inhomogeneous dielectric continuum models. J Chem Phys 89:3519–3534

    Article  CAS  Google Scholar 

  76. Kivelson D, Friedman H (1989) Longitudinal dielectric relaxation. J Phys Chem 93:7026–7031

    Article  CAS  Google Scholar 

  77. Kaatze U (1993) Dielectric relaxation of H2O/D2O mixtures. Chem Phys Lett 203:1–4

    Article  CAS  Google Scholar 

  78. Martinez SE, Huang D, Ponomarev M, Cramer WA, Smith JL (1996) The heme redox center of chloroplast cytochrome F is linked to a buried five-water chain. Protein Sci 5:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pomès R, Roux B (1998) Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys J 75:33–40

    Article  PubMed  PubMed Central  Google Scholar 

  80. DeLano W (2009) Pymol home page. www.pymol.org

Download references

Acknowledgments

This research was supported by the National Science Foundation awards MCB-0719248 and MCB-1051996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Toptygin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toptygin, D. (2016). Time-Dependent Spectral Shifts in Tryptophan Fluorescence: Bridging Experiments with Molecular Dynamics Simulations. In: Geddes, C. (eds) Reviews in Fluorescence 2015. Reviews in Fluorescence, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-24609-3_2

Download citation

Publish with us

Policies and ethics