Skip to main content

Precerebellar Nuclei

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

The cerebellar cortex receives several inputs from the surrounding nuclei, the precerebellar systems. Two major types of precerebellar systems are known; mossy fiber (MF) and climbing fiber (CF) systems. MF neurons are found in several nuclei in the brain stem. Four major nuclei in the hindbrain contain MF neurons; the pontine gray nucleus (PGN), the reticulotegmental nucleus (RTN), the lateral reticular nucleus (LRN) and the external cuneate nucleus (ECN). In addition, MF neurons also reside in the spinal trigeminal nucleus (Sp5) in the hindbrain and Clarke’s column (CC) in the spinal cord. MF neurons extend their glutamatergic projection to granule cells conveying peripheral and cortical information to the cerebellum. In contrast, CF neurons are located mainly in the inferior olive nucleus (ION), which receive inputs from the cerebral cortex, the red nucleus, spinal cord and other brain stem nuclei, and extend their glutamatergic projection to Purkinje cells. Both types of precerebellar neurons also project to neurons in the cerebellar nuclei. It is thought that these precerebellar systems transmit the external and internal information to the cerebellar cortex to modulate cerebellar function, including regulation of animal movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. I–IV. J Comp Neurol 257:477–552

    Article  CAS  PubMed  Google Scholar 

  • Ambrosiani J, Armengol JA, Martinez S, Puelles L (1996) The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos. Neuroreport 7:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127:1039–1048

    CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    Article  CAS  PubMed  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19:4407–4420

    CAS  PubMed  Google Scholar 

  • Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804

    Article  CAS  PubMed  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi D, Taniguchi H, Watanabe H, Saito T, Murakami F (2006) Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration. Development 133:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Kyriakopoulou K, de Diego I, Wassef M, Karagogeos D (2002) A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla. Development 129:287–296

    CAS  PubMed  Google Scholar 

  • Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li H, Hu X, Yu L, Liu H, Han R, Colella R, Mower GD, Chen Y, Qiu M (2008) Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci 28:10124–10133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DH, Bruce LL (2006) Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain. Dev Dyn 235:285–300

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Keino-Masu K, Masu M (2007) Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neurosci Res 57:40–49

    Article  CAS  PubMed  Google Scholar 

  • Pierce ET (1973) Time of origin of neurons in the brain stem of the mouse. Prog Brain Res 40:53–65

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok TJ, Cella F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris leucoagglutinin. Eur J Neurosci 7:1410–1413

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Zhu Y, Murakami F (2013) Four-dimensional analysis of nucleogenesis of the pontine nucleus in the hindbrain. J Comp Neurol 521:3340–3357

    Article  PubMed  Google Scholar 

  • Storm R, Cholewa-Waclaw J, Reuter K, Brohl D, Sieber M, Treier M, Muller T, Birchmeier C (2009) The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 136:295–305

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, Nabeshima Y, Hoshino M (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27:10924–10934

    Article  CAS  PubMed  Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O'Leary DM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24:607–622

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Hoshino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamada, M., Hoshino, M. (2016). Precerebellar Nuclei. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_7

Download citation

Publish with us

Policies and ethics