Skip to main content

MRI Aspects: Conventional, SWI, DTI

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Despite the good quality of new generation computerized tomography (CT), magnetic resonance imaging (MRI) is the method of choice for visualization of structures within the posterior fossa and spinal canal. Different to CT bone artefacts are not a problem in MRI. The cerebellum, the brainstem and the spinal cord are shown in much more detail. This chapter will focus on structural MRI in degenerative cerebellar ataxias. These are slowly progressive degenerative disorders which involve the cerebellum and cerebellar pathways to varying extents. Structural MRI in focal cerebellar disease, such as stroke, tumors or multiple sclerosis, will not be addressed. T1 weighted MRI images have the best gray matter/white matter contrast. Therefore, T1 weighted MRI images are commonly used to reveal atrophy of the cerebellar cortex, the brainstem and spinal cord. In a subset of cerebellar ataxias there is white matter disease. Proton density (PD), T2 weighted, and fluid attenuated inversion recovery (FLAIR) MRI images are sensitive to show white matter lesions. MRI contrast enhancement is uncommon in cerebellar degeneration. Susceptibility weighted imaging (SWI) and diffusion weighted imaging (DWI), more specifically diffusion tensor imaging (DTI), are newer developments. SWI images are helpful to show abnormal brain iron deposition, but also accompanying atrophy of the iron-rich cerebellar nuclei. DTI is helpful to show changes of the integrity of cerebellar white matter and cerebellar peduncles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61

    Article  CAS  PubMed  Google Scholar 

  • Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB, Vella A, Webb SJ, Habas C (2015) Consensus paper: radiological biomarkers of cerebellar diseases. Cerebellum 14:175–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown SS, Stanfield AC (2015) Fragile X premutation carriers: a systematic review of neuroimaging findings. J Neurol Sci 352:19–28

    Google Scholar 

  • Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, Didierjean O, Brice A, Klockgether T (1996) Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain 119:1497–1505

    Article  PubMed  Google Scholar 

  • Clemm von Hohenberg C, Schocke MF, Wigand MC, Nachbauer W, Guttmann CR, Kubicki M, Shenton ME, Boesch S, Egger K (2013) Radial diffusivity in the cerebellar peduncles correlates with clinical severity in Friedreich ataxia. Neurol Sci 34:1459–1462

    Article  PubMed  Google Scholar 

  • Dupré N, Gros-Louis F, Chrestian N, Verreault S, Brunet D, de Verteuil D, Brais B, Bouchard JP, Rouleau GA (2007) Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62:93–98

    Article  PubMed  Google Scholar 

  • Jung BC, Choi SI, Du AX, Cuzzocreo JL, Geng ZZ, Ying HS, Perlman SL, Toga AW, Prince JL, Ying SH (2012) Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration. Cerebellum 11:887–895

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinghorn KJ, Kaliakatsos M, Blakely EL, Taylor RW, Rich P, Clarke A, Omer S (2013) Hypertrophic olivary degeneration on magnetic resonance imaging in mitochondrial syndromes associated with POLG and SURF1 mutations. J Neurol 260:3–9

    Article  CAS  PubMed  Google Scholar 

  • Klockgether T, Petersen D, Grodd W, Dichgans J (1991) Early onset cerebellar ataxia with retained tendon reflexes. Clinical, electrophysiological and MRI observations in comparison with Friedreich’s ataxia. Brain 114:1559–1573

    Article  PubMed  Google Scholar 

  • Kohlschütter A, Bley A, Brockmann K, Gärtner J, Krägeloh-Mann I, Rolfs A, Schöls L (2010) Leukodystrophies and other genetic metabolic leukoencephalopathies in children and adults. Brain Dev 32:82–89

    Article  PubMed  Google Scholar 

  • Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    Article  PubMed  Google Scholar 

  • McRobbie DW (2007) MRI from picture to proton, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash N, Hageman N, Hua X, Toga AW, Perlman SL, Salamon N (2009) Patterns of fractional anisotropy changes in white matter of cerebellar peduncles distinguish spinocerebellar ataxia-1 from multiple system atrophy and other ataxia syndromes. Neuroimage 47(Suppl 2):T72–T81

    Article  PubMed  Google Scholar 

  • Prosch H, Grois N, Wnorowski M, Steiner M, Prayer D (2007) Long-term MR imaging course of neurodegenerative Langerhans cell histiocytosis. AJNR Am J Neuroradiol 28:1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Renaud M, Anheim M, Kamsteeg EJ, Mallaret M, Mochel F, Vermeer S, Drouot N, Pouget J, Redin C, Salort-Campana E, Kremer HP, Verschuuren-Bemelmans CC, Muller J, Scheffer H, Durr A, Tranchant C, Koenig M (2014) Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. JAMA Neurol 71:1305–1310

    Article  PubMed  Google Scholar 

  • Schulz JB, Klockgether T, Petersen D, Jauch M, Müller-Schauenburg W, Spieker S, Voigt K, Dichgans J (1994) Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT. J Neurol Neurosurg Psychiatry 57:1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, Schöls L, Timmann D, van de Warrenburg B, Dürr A, Pandolfo M, Kang JS, Mandly AG, Nägele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser TK (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–6

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Solbach K, Kraff O, Minnerop M, Beck A, Schöls L, Gizewski ER, Ladd ME, Timmann D (2014) Cerebellar pathology in Friedreich’s ataxia: atrophied dentate nuclei with normal iron content. NeuroImage Clin 6:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D (2015) Structural and functional magnetic resonance imaging abnormalities of cerebellar cortex and nuclei in spinocerebellar ataxia type 3, spinocerebellar ataxia type 6, and Friedreich’s ataxia. Brain 138:1182–1197

    Article  PubMed  Google Scholar 

  • Tonekaboni SH, Mollamohammadi M (2014) Neurodegeneration with brain iron accumulation: an overview. Iran J Child Neurol 8:1–8

    PubMed  PubMed Central  Google Scholar 

  • Vanderver A, Prust M, Tonduti D, Mochel F, Hussey HM, Helman G, Garbern J, Eichler F, Labauge P, Aubourg P, Rodriguez D, Patterson MC, Van Hove JL, Schmidt J, Wolf NI, Boespflug-Tanguy O, Schiffmann R, van der Knaap MS, GLIA Consortium (2015) Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab 114:494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Gong X (2011) Superficial siderosis of the central nervous system: MR findings with susceptibility-weighted imaging. Clin Imaging 35:217–221

    Article  PubMed  Google Scholar 

  • Wattjes M, Lutterbey G, Harzheim M, Gieseke J, Träber F, Klotz L, Klockgether T, Schild H (2006) Imaging of inflammatory lesions at 3.0 Tesla in patients with clinically isolated syndromes suggestive of multiple sclerosis: a comparison of fluid-attenuated inversion recovery with T2 turbo spin-echo. Eur Radiol 16:1494–1500

    Article  PubMed  Google Scholar 

  • Wolf NI (2012) Ataxia in metabolic and white matter disorders. In: Boltshauser E, Schmahmann J (eds) Cerebellar disorders in children. Clinics in developmental medicine No. 191–192. Mac Keith Press, London, pp 269–281

    Google Scholar 

  • Wüllner U, Klockgether T, Petersen D, Naegele T, Dichgans J (1993) Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology 43:318–325

    Article  PubMed  Google Scholar 

  • Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61:1000–1016

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ernst, T.M., Schlamann, M., Timmann, D. (2016). MRI Aspects: Conventional, SWI, DTI. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_48

Download citation

Publish with us

Policies and ethics