Skip to main content

Cerebellar Nuclei

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Understanding the basic physiology of cerebellar nuclei (CN) is essential to the understanding of cerebellar function and disorders as they provide the only output from the cerebellum along with the vestibular nuclei. In addition to integrating the inhibitory input from cerebellar cortical Purkinje cells, CN neurons also receive direct excitation from mossy fibers and this direct excitatory input to the CN may in fact drive a number of behaviorally relevant activities. The complete picture is considerably more complex than that of a simple relay of incoming excitation and inhibition, however. Specifically, the functional significance of synaptic plasticity in the CN, high spontaneous spike rates, post-inhibitory rebound firing, and multiple output pathways including GABAergic inhibition feeding back to the inferior olive remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82(4):1697–1709

    CAS  PubMed  Google Scholar 

  • Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21(4):827–835

    Article  CAS  PubMed  Google Scholar 

  • AlvÄ©a K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K (2008) Questioning the role of rebound firing in the cerebellum. Nat Neurosci 11(11):1256–1258

    Article  Google Scholar 

  • Apps R, Garwicz M (2000) Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J Neurosci 12(1):205–214

    Article  CAS  PubMed  Google Scholar 

  • Blenkinsop TA, Lang EJ (2011) Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci 31(41):14708–14720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gruijl JR, Hoogland TM, De Zeeuw CI (2014) Behavioral correlates of complex spike synchrony in cerebellar microzones. J Neurosci 34(27):8937–8947

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Hoogenraad CC, Koekkoek SKE, Ruigrok TJH, Galjart N, Simpson JI (1998) Microcircuitry and function of the inferior olive. TINS 21(9):391–400

    PubMed  Google Scholar 

  • Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL (2013) The neuronal code(s) of the cerebellum. J Neurosci 33(45):17603–17609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI (2010) Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 107(18):8410–8415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Yoshida M, Obata K (1964) Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia 20:575–576

    Article  CAS  PubMed  Google Scholar 

  • Jahnsen H (1986) Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol 372:129–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefler Y, Yarom Y, Uusisaari MY (2014) Cerebellar inhibitory input to the inferior olive decreases electrical coupling and blocks subthreshold oscillations. Neuron 81(6):1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Lisberger SG (2009) Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162(3):763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisberger SG, Miles FA (1980) Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex. J Neurophysiol 43(6):1725–1745

    CAS  PubMed  Google Scholar 

  • Llinas R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miall RC, Reckess GZ (2002) The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn 48(1):212–226

    Article  CAS  PubMed  Google Scholar 

  • Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci U S A 103(14):5555–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Person AL, Raman IM (2012) Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481(7382):502–505

    Article  CAS  Google Scholar 

  • Pugh JR, Raman IM (2009) Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. TINS 32(3):170–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raman IM, Gustafson AE, Padgett D (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 20(24):9004–9016

    CAS  PubMed  Google Scholar 

  • Sangrey T, Jaeger D (2010) Analysis of distinct short and prolonged components in rebound spiking of deep cerebellar nucleus neurons. Eur J Neurosci 32(10):1646–1657

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 67(3):547–560

    CAS  PubMed  Google Scholar 

  • Simpson JI, Wylie DR, DeZeeuw CI (1996) On climbing fiber signals and their consequence(s). Behav Brain Sci 19(3):384

    Article  Google Scholar 

  • Stefanescu MR, Thürling M, Maderwald S, Wiestler T, Ladd ME, Diedrichsen J, Timmann D (2013) A 7T fMRI study of cerebellar activation in sequential finger movement tasks. Exp Brain Res 228(2):243–254

    Article  CAS  PubMed  Google Scholar 

  • Strick PL (1983) The influence of motor preparation on the response of cerebellar neurons to limb displacements. J Neurosci 3(10):2007–2020

    CAS  PubMed  Google Scholar 

  • Sugihara I, Wu HS, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414(2):131–148

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162(3):732–755

    Article  CAS  PubMed  Google Scholar 

  • Uusisaari M, Obata K, Knopfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97(1):901–911

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jaeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaeger, D., Lu, H. (2016). Cerebellar Nuclei. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_42

Download citation

Publish with us

Policies and ethics