Skip to main content

Norepinephrine and Synaptic Transmission in the Cerebellum

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Although the presence of norepinephrine (NE) in the mammalian cerebellum was initially controversial, there is now substantial evidence of a role for the NE system in modulating the response properties of individual cerebellar neurons to synaptic inputs rather than transmitting moment-to-moment details of modality specific information. As a result of these cellular actions the system is capable of regulating cerebellar circuit functions within the context of ongoing voluntary and reflex motor activities and in a manner appropriate to the behavioral state of the organism. The evidence for this mode of operation derives from extensive anatomical, physiological and pharmacological investigations over a period of more than 40 years. This chapter summarizes those studies and the development of this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anden N, Fuxe K, Ungerstedt U (1967) Monoamine pathways to the cerebellum and cerebral cortex. Experientia 23(10):838–839

    Article  CAS  PubMed  Google Scholar 

  • Berridge C, Waterhouse B (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res: Brain Res Rev 42(1):33–84

    Article  PubMed  Google Scholar 

  • Bloom F, Hoffer B, Siggins G (1971) Studies on norepinephrine-containing afferents to purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Res 25(3):501–521

    Article  CAS  PubMed  Google Scholar 

  • Cheun J, Yeh H (1996) Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: cyclic AMP as intracellular intermediary. Neuroscience 74(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Freedman R, Hoffer BJ, Puro D, Woodward DJ (1976) Noradrenaline modulation of the responses of the cerebellar Purkinje cell to afferent synaptic activity. Br J Pharmacol 57(4):603–605

    Google Scholar 

  • Freedman R, Hoffer B, Woodward D, Puro D (1977) Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers. Exp Neurol 55(1):269–288

    Article  CAS  PubMed  Google Scholar 

  • Hoffer B, Siggins G, Bloom F (1971a) Studies on norepinephrine-containing afferents to purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res 25(3):523–534

    Article  CAS  PubMed  Google Scholar 

  • Hoffer B, Siggins G, Woodward D, Bloom F (1971b) Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine. Brain Res 30(2):425–430

    Article  CAS  PubMed  Google Scholar 

  • Iversen L, Glowinski J (1966) Regional studies of catecholamines in the rat brain – II. J Neurochem 13(8):671–682

    Article  CAS  PubMed  Google Scholar 

  • Kirkness E, Bovenkerk C, Ueda T, Turner A (1989) Phosphorylation of gamma-aminobutyrate (GABA)/benzodiazepine receptors by cyclic AMP-dependent protein kinase. Biochem J 259(2):613–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moises H, Woodward D, Hoffer B, Freedman R (1979) Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp Neurol 64(3):493–515

    Article  CAS  PubMed  Google Scholar 

  • Moises H, Waterhouse B, Woodward D (1981) Locus coeruleus stimulation potentiates purkinje cell responses to afferent input: the climbing fiber system. Brain Res 222(1):43–64

    Article  CAS  PubMed  Google Scholar 

  • Moises H, Waterhouse B, Woodward D (1983) Locus coeruleus stimulation potentiates local inhibitory processes in rat cerebellum. Brain Res Bull 10(6):795–804

    Article  CAS  PubMed  Google Scholar 

  • Moises H, Burne R, Woodward D (1990) Modification of visual response properties of cerebellar neurons by norepinephrine. Brain Res 514(2):259–275

    Article  CAS  PubMed  Google Scholar 

  • Olson L, Fuxe K (1971) On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res 28(1):165–171

    Article  CAS  PubMed  Google Scholar 

  • Siggins G, Hoffer B, Bloom F (1971a) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. 3. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate. Brain Res 25(3):535–553

    Article  CAS  PubMed  Google Scholar 

  • Siggins G, Oliver A, Hoffer B, Bloom F (1971b) Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171(967):192–194

    Article  CAS  PubMed  Google Scholar 

  • Swanson L, Hartman B (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker. J Comp Neurol 163(4):467–505

    Article  CAS  PubMed  Google Scholar 

  • Sweetnam P, Lloyd J, Gallombardo P, Malison R, Gallager D, Tallman J, Nestler E (1988) Phosphorylation of the GABAa/benzodiazepine receptor alpha subunit by a receptor-associated protein kinase. J Neurochem 51(4):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • van Neeven J, Pompeiano O, Collewijn H, van der Steen J (1990) Injections of beta-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Exp Brain Res 79(2):249–260

    Article  Google Scholar 

  • Waterhouse B, Moises H, Yeh H, Woodward D (1982) Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: mediation by beta adrenergic receptors. J Pharmacol Exp Ther 221(2):495–506

    CAS  PubMed  Google Scholar 

  • Watson M, McElligott J (1984) Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res 296(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • West M, Woodward D (1984) Iontophoresis in the freely moving rat: norepinephrine in the cerebellum. Soc Neurosci Abstr 10:71

    Google Scholar 

  • Woodward D, Waterhouse B, Hoffer B, Freedman R (1979) Modulatory actions of norepinephrine in the central nervous system. Fed Proc 38(7):2109–2116

    CAS  PubMed  Google Scholar 

  • Yeh H, Moises H, Waterhouse B, Woodward D (1981) Modulatory interactions between norepinephrine and taurine, β-alanine, λ-aminobutyric acid and muscimol, applied microiontophoretically to cerebellar Purkinje cells. Neuropharmacology 20(6):549–560

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry D. Waterhouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zitnik, G., Chandler, D.J., Waterhouse, B.D. (2016). Norepinephrine and Synaptic Transmission in the Cerebellum. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_30

Download citation

Publish with us

Policies and ethics