Skip to main content

Sem Best Shortest Paths for the Characterization of Differentially Expressed Genes

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8623))

  • 1403 Accesses

Abstract

In the last years, systems and computational biology focused their efforts in uncovering the causal relationships among the observable perturbations of gene regulatory networks and human diseases. This problem becomes even more challenging when network models and algorithms have to take into account slightly significant effects, caused by often peripheral or unknown genes that cooperatively cause the observed diseased phenotype. Many solutions, from community and pathway analysis to information flow simulation, have been proposed, with the aim of reproducing biological regulatory networks and cascades, directly from empirical data as gene expression microarray data. In this contribute, we propose a methodology to evaluate the most important shortest paths between differentially expressed genes in biological interaction networks, with absolutely no need of user-defined parameters or heuristic rules, enabling a free-of-bias discovery and overcoming common issues affecting the most recent network-based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). doi:10.1038/nrg2918.

    Google Scholar 

  2. Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10(5), 280–293 (2011). doi:10.1093/bfgp

    Google Scholar 

  3. Cho, D.Y., Kim, Y.A., Przytycka, T.: Chapter 5: Network biology approach to complex diseases. PLoS Comput. Biol. 8(12), e1002820 (2012). doi:10.1371/journal.pcbi.1002820

    Google Scholar 

  4. Shih, Y.K., Parthasarathy, S.: A single source k-shortest paths algorithm to infer regulatory pathways in a gene network. Bioinformatics 28(12), i49–i58 (2012). doi:10.1093/bioinformatics

    Google Scholar 

  5. Stojmirović, A., Yu, Y. I.: Probe: analyzing information flow in protein networks. Bioinformatics 25(18), 2447–2449 (2009). doi:10.1093/bioinformatics

    Google Scholar 

  6. Gene Ontology Consortium, Gene Ontology annotations and resources. Nucleic Acids Research 41(D1), D530–D535 (2013)

    Google Scholar 

  7. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic Acids Res. 32(database issue), D277–D280 (2004)

    Google Scholar 

  8. Pepe, D., Grassi, M.: Investigating perturbed pathway modules from gene expression data via structural equation models. BMC Bioinformatics 15(1), 132 (2014)

    Article  Google Scholar 

  9. Bollen, K.A.: Structural equations with latent variables. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  10. Tarca, A.L., Draghici, S., Khatri, P., Hassan, S., Mital, P., Kim, J., Kim, C., Kusanovic, J.P., Romero, R.: A novel signaling pathway impact analysis for microarray experiments. Bioinformatics 25, 75–82 (2009)

    Article  Google Scholar 

  11. R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2012). http://www.R-project.org/

  12. Zhang, J.D., Wiemann, S.: KEGGgraph: a graph approach to KEGG PATHWAY in R and Bioconductor. Bioinformatics 25(11), 1470–1471 (2009)

    Article  Google Scholar 

  13. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter Journal, Complex Systems 1695 (2006). http://igraph.sf.net

  14. Konishi, S., Kitagawa, G.: Bayesian information criteria. Information Criteria and Statistical Modeling, 211–237 (2008)

    Google Scholar 

  15. Yu, G., Wang, L.G., Han, Y., He, Q.Y.: clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16(5), 284–287 (2012)

    Article  Google Scholar 

  16. Hu, L.T., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6(1), 1–55 (1999)

    Article  Google Scholar 

  17. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 4(1) (2005)

    Google Scholar 

  18. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41(database issue), D991–D995 (2013)

    Google Scholar 

  19. Arijs, I., Li, K., Toedter, G., Quintens, R., et al.: Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58(12), 1612–1619 (2009)

    Article  Google Scholar 

  20. Autschbach, F., Giese, T., Gassler, N., Sido, B., Heuschen, G., Heuschen, U., Meuer, S.C.: Cytokine/chemokine messenger-RNA expression profiles in ulcerative colitis and Crohn’s disease. Virchows Archiv 441(5), 500–513 (2002)

    Article  Google Scholar 

  21. Rutgeerts, P., Sandborn, W.J., Feagan, B.G., Reinisch, W., Olson, A., Johanns, J., Colombel, J.F.: Infliximab for induction and maintenance therapy for ulcerative colitis. New England Journal of Medicine 353(23), 2462–2476 (2005)

    Article  Google Scholar 

  22. Sina, C., Gavrilova, O., Förster, M., Till, A., Derer, S., Hildebrand, F., Rosenstiel, P.: G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. The Journal of Immunology 183(11), 7514–7522 (2009)

    Article  Google Scholar 

  23. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Google Scholar 

  24. Pepe, D., Grassi, M.: Pathway Composite Variables: A Useful Tool for the Interpretation of Biological Pathways in the Analysis of Gene Expression Data. Studies in theoretical and Applied statistics. Springer (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pepe, D., Palluzzi, F., Grassi, M. (2015). Sem Best Shortest Paths for the Characterization of Differentially Expressed Genes. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24462-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24461-7

  • Online ISBN: 978-3-319-24462-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics