Skip to main content

Part of the book series: Springer Water ((SPWA))

Abstract

Wind erosion has become an important soil degradation process on arable land, caused by land use techniques that leave a disturbed, temporarily bare surface or insufficient soil cover material at the surface. Soils that have been formed by aeolian processes over centuries are endangered to be destroyed by the same processes within a very short time. Wind erosion is not only a soil-removing process but also a very effective sorting process. Coarse particles remain in the field, whereas the finest and most valuable parts of the soil are lost, such as particles of the silt and clay fractions and the soil organic matter. This chapter introduces advanced methods to assess wind erosion and to quantify the corresponding soil losses. Evaluation schemes generally consider two categories to determine the extent of wind erosion: the erosivity of the climate and the erodibility of the soil, divided into few classes and linked in simple matrices to derive the wind erosion risk in a comparative way. The German standard DIN 19706 “Soil quality—Determination of the soil exposure risk from wind erosion” was a basis for a Geographic Information System (GIS) risk map of all agricultural fields in Germany. The quantification of wind erosion is based on the measurements of the horizontal fluxes that can be used further to derive soil losses/dust emissions or the deposition of the transported particles. Sufficient depositions can be measured in their thickness and extent to calculate the relocated volume or mass. The comparison of the grain size distribution and the organic carbon content of the original soil, the redistributed material, and the depositions enable the losses of fine particles and organic matter to be calculated. Models of wind erosion have been calibrated to specific conditions of the soil surface and plant cover and refined by wind tunnel experiments. The Fallout-Radionuclide method is suited to identify wind erosion and dust deposition pattern at larger spatial and temporal scales. Finally, remote-sensing and GIS procedures are used to present areas for wind erosion and dust deposition for large landscape units. The methods presented here have been shown to be proven in important agricultural regions around the globe. Conclusions include recommendations for the installation of wind erosion monitoring plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagnold RA (1943) The physics of blown sand and desert dunes. William Morrow & Co., New York 265 p

    Google Scholar 

  • Basaran M, Erpul G, Uzun O, Gabriels D (2011) Comparative efficiency testing for a newly designed cyclone type sediment trap for wind erosion measurements. Geomorphology 130:343–351. doi:10.1016/j.geomorph.2011.04.016

    Article  Google Scholar 

  • BMBF (2011–2016) KULUNDA. How to prevent the next “Global Dust Bowl”? Ecological and economic strategies for sustainable land management in the russian steppes: a potential solution to climate change. www.kulunda.eu. Accessed 25 Jan 2015

  • Bezuglov VG, Gomachadze GD, Sinigovets ME (2008) Status of soil erosion in Russia. (Cocтoяниe c эpoзиeй пoчв в Poccии) Ecologiya 2008 No. 1. http://agroecoinfo.narod.ru/journal/STATYI/2008/1/st_01.doc. Accessed 25 Jan 2015

  • Borrelli P, Panagos P, Ballabio C, Lugato E, Weynants M, Montanarella L (2014) Towards a Pan-European assessment of land susceptibility to wind erosion. Land degrad develop (2014). Published online in Wiley Online Library (www.wileyonlinelibrary.com). doi:10.1002/ldr.2318

    Google Scholar 

  • Bristow CS, Hudson-Edwards KA, Chappell A (2010) Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys Res Lett 37(14):L14807. doi:10.1029/2010GL043486

    Article  Google Scholar 

  • Buschiazzo DE, Zobeck TM (2008) Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surf Proc Land 33(12):1839–1850

    Article  Google Scholar 

  • Buschiazzo DE, Funk R (2015) Wind erosion of agricultural soils and the carbon cycle. In: Banwart SA, Noellemeyer E, Milne E (eds) Soil carbon: science, management and policy for multiple benefits. CABI, Wallingford, pp 161–168

    Google Scholar 

  • Chen W, Dong Z, Li Z, Yang Z (1996) Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. J Arid Environ 34(4):391–402

    Article  Google Scholar 

  • Chen L, Zhao H, Han B, Bai Z (2013) Combined use of WEPS and models-3/CMAQ for simulating wind erosion source emission and its environmental impact. Sci Total Environ 466–467(2013):762–769

    Google Scholar 

  • Chepil WS (1955a) Factors that influence clod structure and erodibility of soil by wind: V. Organic matter at various stages of decomposition. Soil Sci 80(5):413–421

    Article  Google Scholar 

  • Chepil WS (1955b) Factors that influence clod structure and erodibility of soil by wind: IV. Sand, silt, and clay. Soil Sci 80(5):155–162

    Article  Google Scholar 

  • Chepil WS (1960) Conversion of relative field erodibility to annual soil losses by wind. Soil Sci Soc Am Proc 24:143–145

    Article  Google Scholar 

  • Chepil WS, Woodruff NP (1961) The physics of wind erosion and its control. Adv Agron 15:211–302

    Article  Google Scholar 

  • Chepil WS, Siddoway FH, Armbrust DV (1962) Climatic factor for estimating wind erodibility of farm fields. J Soil Water Conserv 17:162–165

    Google Scholar 

  • Clark R, MacEwan R, Robinson N, Jonathon Hopley J (2010) Remote sensing of land cover and land management practices affecting wind erosion risk in NW Victoria, Australia. http://www.iuss.org/19th%20WCSS/Symposium/pdf/0575.pdf. Accessed 25 Jan 2015

  • Cornelis W, Gabriels D, Hartmann R (2004) A parametrisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology 59:43–51

    Article  Google Scholar 

  • Davis JJ (1963) Caesium and its relationship to potassium in ecology. In: Schultz V, Klement AW Jr (eds) Radioecology: proceedings of the first national symposium on radioecology. Reinhold Pub. Corp, New York, pp 539–556

    Google Scholar 

  • del Valle HF, Blanco PD, Metternicht GI, Zinck JA (2009) Radar remote sensing of wind-driven land degradation processes in northeastern Patagonia. J Environ Qual 39(1):62–75. doi:10.2134/jeq2009.0071

    Article  Google Scholar 

  • DIN 19706 (2004) Soil quality—determination of the soil exposure risk from wind erosion. Deutsches Institut Für Normung e.V. (German National Standard), 05/01/2004, Beuth, Verlag

    Google Scholar 

  • ECMWF (2005) European Centre for Medium-Term Weather Forecasts, ERA 40 Re-analysis data set. The climate data guide: ERA40. Last modified 20 Nov 2014. https://climatedataguide.ucar.edu/climate-data/era40. Accessed 25 Jan 2015

  • Etyemezian VR (2015) Vertical profiles, size distributions, and intermittency in aeolian sediment transport: field measurements with a novel instrument (Sand Sensor I). Research project. Desert Research Institute (DRI). http://www.dri.edu/das-research/3811-vertical-profiles-size-distributions-and-intermittency-in-aeolian-sediment-transport–field-measurements-with-a-novel-instrument-sand-sensor-i. Accessed 25 Jan 2015

  • European Commission (2006) Thematic strategy for soil protection. COM (2006), 231. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0231:FIN:EN:PDF. Accessed 25 Jan 2015

  • ESDB (2013) European soil database. European Commission—Joint Research Centre. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDB/Index.htm

  • FAO (2009) Global agriculture towards 2050. High level expert forum “How to feed the world in 2050, Office of the Director, Agricultural Development Economics Division Economic and Social Development Department, FAO, Rome. http://www.fao.org/wsfs/forum2050/wsfs-background-documents/hlef-issues-briefs/en/. Accessed 25 Jan 2015

  • Fister W, Iserloh T, Ries JB, Schmidt R-G (2012) A portable wind and rainfall simulator for in-situ soil erosion measurements. Catena 91(2012):72–84

    Article  Google Scholar 

  • Fryrear DW (1986) A field dust sampler. J Soil Water Conserv 41(2):117–120

    Google Scholar 

  • Fryrear DW, Sutherland PL, Davis G, Hardee G, Dollar M (1999) Wind erosion estimates with RWEQ and WEQ. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Selected papers from the 10th international soil conservation organization meeting held 24–29 May 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, pp 760–765

    Google Scholar 

  • Funk R (1995). Quantifizierung der Winderosion auf einem Sandstandort Brandenburgs unter besonderer Berücksichtigung der Vegetationswirkung. ZALF-Bericht Nr. 16, Müncheberg

    Google Scholar 

  • Funk R, Engel W (2015) Investigations with a field wind tunnel to estimate the wind erosion risk of row crops. Soil Tillage Res 145:224–232. doi:10.1016/j.still.2014.09.005

    Article  Google Scholar 

  • Funk R, Frielinghaus M (1997) Berechnung potentieller Bodenabträge durch Wind für ausgewählte Böden Mecklenburg-Vorpommerns. Mitt Dt Bodenkundl Ges 83:107–110

    Google Scholar 

  • Funk R, Skidmore EL, Hagen LJ (2004a) Comparison of wind erosion measurements in Germany with simulated soil losses by WEPS. Environ Model Softw 19(2):177–183

    Article  Google Scholar 

  • Funk R, Deumlich D, Völker L, Steidl J (2004b) GIS application to estimate the wind erosion risk in the Federal State of Brandenburg. In: Goossens D, Riksen M (eds) Wind erosion and dust dynamics: observations, simulations, modelling. ESW Publications, Wageningen, pp 139–149

    Google Scholar 

  • Funk R, Li Y, Hoffmann C, Reiche M, Zhang Z, Li J, Sommer M (2012) Using 137Cs to estimate wind erosion and dust deposition on grassland in Inner Mongolia—selection of a reference site and description of the temporal variability. Plant Soil 351:293–307. doi:10.1007/s11104-011-0964-y

    Article  CAS  Google Scholar 

  • Funk R, Hoffmann C, Reiche M (2014) Methods for quantifying wind erosion in steppe regions. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of central Asia. Environmental science and engineering 2014, pp 315–327. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_18. Accessed 25 Jan 2015

    Google Scholar 

  • Goossens D, Offer ZY (2000) Wind tunnel and field calibration of six aeolian dust samplers. Atm Environ 34:1043–1057

    Article  CAS  Google Scholar 

  • Goossens D, Offer Z, London G (2000) Wind tunnel and field calibration of five aeolian sand traps. Geomorphology 35:233–252

    Article  Google Scholar 

  • Goossens D, Riksen M (2004) Wind erosion and dust dynamics at the commencement of the 21st century. In: Goossens D, Riksen M (eds) Wind erosion and dust dynamics, simulations, modelling. ESW Publications, Wageningen, pp 7–13

    Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge Planetary Science Series 4. Cambridge University Press, Oxford, p 333

    Book  Google Scholar 

  • Guo Z, Huang N, Dong Z, Van Pelt RS, Zobeck TM (2014) Wind erosion induced soil degradation in northern China: status. Measures and perspective. Sustainability 6(12):8951–8966. doi:10.3390/su6128951

    Article  Google Scholar 

  • Hagen LJ (1991) A wind erosion prediction system to meet user needs. J Soil Water Cons 46(2):106–111

    Google Scholar 

  • Hagen LJ (2001) Assessment of wind erosion parameters using wind tunnels. In: Scott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Selected papers from the 10th international soil conservation organization meeting held 24–29 May 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory

    Google Scholar 

  • Hagen LJ (1996) Crop residue effects on aerodynamic processes and wind erosion. Theor Appl Climatol 54(1996):39–46

    Article  Google Scholar 

  • Helming K, Funk R (2001) Eine Methode zur kontinuierlichen Bestimmung der Rauhigkeit von Ackeroberflächen. Mitt Dt Bodenkd Ges 96(2):611–612

    Google Scholar 

  • Helming K (2014) Impact assessment for multifunctional land use. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of central Asia. Springer, Environmental Science and Engineering 2014, pp 223–234. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_12. Accessed 25 Jan 2015

  • Hoffmann C, Funk R, Wieland R, Li Y, Sommer M (2008) Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J Arid Environ 72:792–807

    Article  Google Scholar 

  • Hoffmann C, Funk R, Reiche M, Li Y (2011) Assessment of extreme wind erosion in Inner Mongolia. Aeolian Res, China, pp 343–351

    Google Scholar 

  • Hong S-W, Lee I-B, Seo I-H, Kwon K-S, Kim T-W, Son Y-H, Kim M (2014) Measurement and prediction of soil erosion in dry field using portable wind erosion tunnel. Biosyst Eng 118:68–82. doi:10.1016/j.biosystemseng.2013.11.003

    Article  Google Scholar 

  • Janssen W, Tetzlaff G (1991) Entwicklung und Eichung einer registrierenden Suspensionsfalle. Z. f. Kulturtechn. Landentwickl. 32:167–180

    Google Scholar 

  • Jester W, Klik A (2005) Soil surface roughness measurements—methods, applicability, and surface representation. Catena 64:174–192

    Article  Google Scholar 

  • Jönsson P (1992) Wind erosion on sugar beet fields in Scania, southern Sweden. Agric Forest Meteorol 62:141–157

    Article  Google Scholar 

  • Karanasiou A, Moreno N, Moreno T, Viana M, de Leeuw F, Querol X (2012) Health effects from Sahara dust episodes in Europe: literature review and research gaps. Environ Int 15(47):107–114. doi:10.1016/j.envint.2012.06.012

    Article  Google Scholar 

  • Kuntze H, Beinhauer R, Tetzlaff G (1990) Quantification of soil erosion by wind, I. Final Report of the BMFT project. Project No. 0339058 A, B, C. Institute of Meteorology and Climatology, University of Hannover, Germany

    Google Scholar 

  • Kuznetsov MS, Glazunov GP (1996) Erosion and soil conservation (Эpoзия и oxpaнa пoчв). Publisher Moscow State University (MGU) 1969, 335 p. ISBN: 5211033817 (in Russian)

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  Google Scholar 

  • Larionov GA (1993) Erosion and deflation of soils (Эpoзия и дeфляция пoчв: ocнoвныe зaкoнoмepнocти и кoличecтвeнныe oцeнки). Moscow University Press, 200 p. ISBN 5-211-02467-2 (in Russian)

    Google Scholar 

  • Li J, Okin GS, Tatarko J, Webb NP, Herrick JE (2014) Consistency of wind erosion assessments across land use and land cover types: A critical analysis. Aeolian Research 15:253–260

    Article  Google Scholar 

  • Lu H, Shao Y (2001) Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications. Environ Model Softw 16:233–249

    Article  Google Scholar 

  • Lyles L (1975) Possible effects of wind erosion on soil productivity. J Soil Water Conserv 30(6):279–283

    Google Scholar 

  • Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J. Env. Rad. 99:1799–1807

    Article  CAS  Google Scholar 

  • Martínez-Garzia A, Rosell-Mele A, Jaccard SL, Geibert W, Sigman DM, Haug GH (2011) Southern ocean dust-climate coupling over the past four million years. Nature 476:312–316

    Article  Google Scholar 

  • McTainsh G, Leys J, Bastin G, Tews K, Strong C, McGowan H (2009) Wind erosion risk management for more environmentally sustainable primary production, Research Report 24, Desert Knowledge Cooperative Research Centre, Alice Springs. http://www.nintione.com.au/resource/DKCRC-Report-24-Wind-erosion-risk-management.pdf. Accessed on 25 Jan 2015

  • Meinel T, Grunwald L-C, Akshalov K (2014) Modern technologies for soil management and conservation in Northern Kazakhstan. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer, Environmental Science and Engineering 2014, pp 455–464, http://link.springer.com/chapter/10.1007/978-3-319-01017-5_27. Accessed on 25 Jan 2015

  • Mendez M, Funk R, Buschiazzo DE (2011) Field wind erosion measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers. Geomorphology 129:43–48

    Article  Google Scholar 

  • Mirschel W, Wenkel K-O, Berg M, Wieland R, Nendel C, Köstner B, Topazh AG, Terleev VV, Badenko VL (2016) A spatial model-based decision support system for evaluating agricultural landscapes under the aspect of climate change. In: L. Mueller et al. (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer, Cham, pp 519–540 (Chapter 23 of this book)

    Google Scholar 

  • Montgomery DR (2007) Dirt: the erosion of civilizations. University of California Press, California 285 p

    Google Scholar 

  • Mueller L, Schindler U, Shepherd TG, Ball BC, Smolentseva E, Pachikin K, Hu C, Hennings V, Sheudshen AK, Behrendt A, Eulenstein F, Dannowski R (2014) The Muencheberg Soil Quality Rating for assessing the quality of global farmland. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer, Environmental Science and Engineering 2014, pp 235–248. http://link.springer.com/chapter/10.1007/978-3-319-01017-5_13. Accessed on 25 Jan 2015

  • Mueller L, Schindler U, Hennings V, Smolentseva EN, Rukhovich OV, Romanenkov VA, Sychev VG, Lukin S, Sheudshen AK, Onishenko L, Saparov A, Pachikin K, Behrendt A, Mirschel W, Eulenstein F (2016) An emerging method of rating global soil quality and productivity potentials. In: L. Mueller et al. (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer, Cham, pp 573–595 (Chapter 26 of this book)

    Google Scholar 

  • Nordstrom KF, Hotta S (2004) Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma 121(2004):157–167

    Article  Google Scholar 

  • Perez L, Tobias A, Querol X, Künzli N, Pey J, Alastuey A, Viana M, Valero N, González-Cabré M, Sunyer J (2008) Coarse particles from Saharan dust and daily mortality. Epi-demiology 19(6):800–807. doi:10.1097/EDE.0b013e31818131cf

    Google Scholar 

  • Ravi S, D’Odorico P (2005) A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys Res Lett 32:L21404

    Article  Google Scholar 

  • Reiche M, Funk R, Zhang Z, Hoffmann C, Reiche J, Wehrhan M, Li Y, Sommer M (2012) Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China. Grassland Science 58:8–19

    Google Scholar 

  • Riksen M, Brouwer F, Spaan W, Arrue JL, Lope MV (2003) What to do about wind erosion. In: Warren A (ed) Wind erosion on agricultural land in Europe. European Commission, EUR 20370, pp 39–54

    Google Scholar 

  • Ries JB, Marzen M, Iserloh T, Fister W (2014) Soil erosion in Mediterranean landscapes—experimental investigation on crusted surfaces by means of the portable wind and rainfall simulator. J Arid Environ 100–101:42–51

    Article  Google Scholar 

  • Ritchie JC, Ritchie CA (2007) Bibliography of publications of 137Cs studies related to erosion and sediment deposition. http://www.ars.usda.gov/Main/docs.htm?docid=15237. Accessed on 25 Jan 2015

  • Romanenkov V, Rukhovich D, Koroleva P, McCarty JL (2014) Estimating black carbon emissions from agricultural burning. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer, Environmental Science and Engineering, pp 347–364

    Google Scholar 

  • Saha SK (2004) Water and wind induced soil erosion assessment and monitoring using remote sensing and GIS. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, pp 315–330

    Google Scholar 

  • Schroeder WR, Kort J (1989) Shelterbelts in the Soviet Union. J Soil Water Cons 44(2):130–134

    Google Scholar 

  • Shao Y, Wyrwoll KH, Chappell A, Huang J, Lin Z, McTainsh GH, Masao M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: an emerging core in earth system science. Aeolian Res 2:181–204

    Article  Google Scholar 

  • Sharratt B, Feng G, Wendling L (2007) Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia Plateau. Earth Surf Proc Land 32:621–630

    Article  Google Scholar 

  • Singh P, Sharratt B, Schillinger WF (2012) Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil Tillage Res 124:219–225. http://dx.doi.org/10.1016/j.still.2012.06.009. Accessed on 25 Jan 2015

    Google Scholar 

  • Spaan WP, van den Abeele GD (1991) Wind borne particle measurements with acoustic sensors. Soil Technol 4:51–63

    Article  Google Scholar 

  • Skidmore EL (1986) Wind erosion climatic erosivity. Clim Change 9:195–208

    Article  Google Scholar 

  • Sterk G, Stein A (1997) Mapping wind-blown mass transport by modelling variability in space an time. Soil Sci Soc Am J 61:232–239

    Article  CAS  Google Scholar 

  • Sterk G, Parigiani J, Cittadini E, Peters P, Scholberg J, Peri P (2012) Aeolian sediment mass fluxes on a sandy soil in Central Patagonia. Catena 95:112–123

    Article  Google Scholar 

  • Stocking M (2003) Erosion and crop yield. Encyclopedia of soil science. Marcel Dekker Inc., New York, pp 1–4. doi:10.1081/E-ESS120006664

  • Tamura T (1964) Consequences of activity release: selective sorption reactions of caesium with soil minerals. Nucl Saf 5:262–268

    Google Scholar 

  • UGT (2014) Umwelt-Geräte-Technik GmbH. Wind erosion sediment trap. http://www.ugt-online.de/en/produkte/bodenkunde/erosions-messtechnik/winderosions-sedimentfalle.html. Accessed on 25 Jan 2015

  • USDA (1995) The wind erosion prediction system. Homepage http://www.weru.ksu.edu/weps/wepshome.html. Accessed on 25 Jan 2015

  • USDA (2002) Revised wind erosion equation. http://www.csrl.ars.usda.gov/wewc/rweq/readme.htm. Accessed on 25 Jan 2015

  • USDA (2008) NRCS wind erosion equation (WEQ) site. http://www.weru.ksu.edu/nrcs/weq.html. Accessed on 25 Jan 2015

  • USDA-ARS (2008) Single-event wind erosion evaluation program SWEEP. User manual draft February 2008, USDA-ARS Wind Erosion Research Unit Manhattan, Kansas, USA. http://www.weru.ksu.edu/new_weru/ftp_site/wagner/IECA_10/SWEEPUserGuide.pdf. Accessed on 25 Jan 2015

  • Van Lynden GWJ (1995) European soil resources. Current status of soil degradation, causes impacts and need for action. Nat Environ, No. 71, Council of Europe

    Google Scholar 

  • Van Pelt RS (2013) Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: historic use of 137Cs. Aeolian Res 9:89–102

    Article  Google Scholar 

  • Van Pelt RS, Ketterer ME (2013) Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II: the potential for future use of 239+240Pu. Aeolian Res 9:103–110

    Article  Google Scholar 

  • Van Pelt RS, Zobeck TM (2004) Validation of the wind erosion equation (WEQ) for discrete periods. Env Model Softw 19:199–203

    Article  Google Scholar 

  • Van Pelt RS, Zobeck TM, Potter KN, Stout JE, Popham TW (2004) Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events. Env Model Softw 19:191–198

    Article  Google Scholar 

  • Veen PH, Kampf H, Liro A (1997) Nature development on former state farms in Poland. Report within the framework of the memorandum of understanding for nature conservation between the Polish Ministry of Environmental Protection, Natural Resources and Forestry and the Dutch Ministry of Agriculture, Nature Management and Fisheries, 48 pp

    Google Scholar 

  • Visser SM, Sterk G, Snepvangers J (2004) Spatial variation in wind-blown sediment transport in geomorphic units in northern Burkina Faso using geostatistical mapping. Geoderma 120:95–107

    Article  Google Scholar 

  • Wagenbrenner NS, Germino MJ, Lamb BK, Robichaud PR, Foltz RB (2013) Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux. Aeolian Res 10:25–36

    Article  Google Scholar 

  • Wagner LE (2013) A history of wind erosion prediction models in the United States Department of Agriculture: the wind erosion prediction system (WEPS). Aeolian Res 10:9–24

    Article  Google Scholar 

  • Webb NP, McGowan HA (2009) Approaches to modelling land erodibility by wind. Prog Phys Geogr 2009:1–27

    Google Scholar 

  • Webb NP, McGowan HA, Phinn SR, Leys JF, Grant H, McTainsh GH (2009) A model to predict land susceptibility to wind erosion in western Queensland, Australia. Environ Model Softw 24(2):214–227

    Article  Google Scholar 

  • Woodruff NP, Siddoway FH (1965) A wind erosion equation. Soil Sci Soc Am Proc 29:602–608

    Article  Google Scholar 

  • Yang X, Leys J (2014) Mapping wind erosion hazard in Australia using MODIS derived ground cover, soil moisture and climate data. 35th international symposium on remote sensing of environment (ISRSE35). IOP Publishing, IOP conference series: earth and environmental science, vol 17, p 012275. doi:10.1088/1755-1315/17/1/012275. http://iopscience.iop.org/1755-1315/17/1/012275/pdf/1755-1315_17_1_012275.pdf. Accessed on 25 Jan 2015

    Google Scholar 

  • Youssef F, Visser S, Karssenberg D, Bruggeman A, Erpul G (2012) Calibration of RWEQ in a patchy landscape; a first step towards a regional scale wind erosion model. Aeolian Res 3(4):467–476

    Article  Google Scholar 

  • Zapata F (2003) The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments. Soil Till Res 69:3–13

    Article  Google Scholar 

  • Zapata F, Garcia-Agundo E, Ritchie JC, Appleby PG (2002) Introduction. In: Zapata F (ed) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides, IAEA, pp 1–13

    Google Scholar 

  • Zhang Z, Wieland R, Reiche M, Funk R, Hoffmann C, Li Y, Sommer M (2012) Identifying sensitive areas to wind erosion in the Xilingele grassland by computational fluid dynamics modelling. Ecol Inform 8(2012):37–47

    Article  CAS  Google Scholar 

  • Zobeck TM, Sterk G, Funk R, Rajot JL, Stout JE, Van Pelt RS (2003a) Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surf Process Land 28:1163–1188

    Article  Google Scholar 

  • Zobeck TM, Popham TW, Skidmore EL, Lamb JA, Merrill SD, Lindstrom MJ, Mokma DL, Yoder RE (2003b) Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distributions. Soil Sci Soc Am J 67:425–436

    Article  CAS  Google Scholar 

  • Zou XY, Zhang CL, Cheng H, Kang LQ, Wu YQ (2015) Cogitation on developing a dynamic model of soil wind erosion, Science China Earth Sciences. http://link.springer.com/article/10.1007%2Fs11430-014-5002-5. Accessed on 25 Jan 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Funk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Funk, R. (2016). Assessment and Measurement of Wind Erosion. In: Mueller, L., Sheudshen, A., Eulenstein, F. (eds) Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_18

Download citation

Publish with us

Policies and ethics