Skip to main content

Simulation for Pediatric Surgery and Surgical Specialties

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Pediatrics

Abstract

See one, do one, teach one. The adage of surgical training for generations now only holds historical significance with an ethical imperative for repetitive practice before attempting procedures on a live pediatric patient. Multiple pressures including work hour restrictions, legal liability, appropriate resource utilization, and ethical consideration for surgical quality are driving a shift in the training and maintenance of surgical skills. Dedicated practice outside of the clinical environment is founded in educational theory and supported in actual practice. The advance of minimally invasive surgical techniques has likewise pushed the advance of simulation in surgical subspecialties. Trainees now have the opportunity to hone skills on task- or procedure-specific models, be it low- or high-fidelity, using animal models, virtual reality, or synthetic trainers. It is recognized that the availability of such trainers does not equate to efficient knowledge transfer and that simulation must be part of a greater curriculum to be successful. Much focus is now given to assessing competence, and simulation is seen as one tool in the evaluation of trainees and credentialing of surgeons. The twenty-first century surgeon is also expected to possess competencies in communication, leadership, and crisis management. Simulation is an educational technique with growing relevance, and pediatric surgery is actively joining the educational movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ericsson KA. Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med. 2008;15(11):988–94.

    Article  PubMed  Google Scholar 

  2. Drake FT, Horvath KD, Goldin AB, Gow KW. The general surgery chief resident operative experience: 23 years of national ACGME case logs. JAMA Surg. 2013;148(9):841–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drolet BC, Sangisetty S, Tracy TF, Cioffi WG. Surgical residents’ perceptions of 2011 accreditation council for graduate medical education duty hour regulations. JAMA Surg. 2013;148(5):427–33.

    Article  PubMed  Google Scholar 

  4. Antiel RM, Reed DA, Van Arendonk KJ, Wightman SC, Hall DE, Porterfield JR, et al. Effects of duty hour restrictions on core competencies, education, quality of life, and burnout among general surgery interns. JAMA Surg. 2013;148(5):448–55.

    Article  PubMed  Google Scholar 

  5. Somme S, Bronsert M, Kempe A, Morrato EH, Ziegler M. Alignment of training curriculum and surgical practice: implications for competency, manpower, and practice modeling. Eur J Pediatr Surg. 2012;22(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  6. Behr CA, Hesketh AJ, Akerman M, Dolgin SE, Cowles RA. Recent trends in the operative experience of junior pediatric surgical attendings: a study of APSA applicant case logs. J Pediatr Surg. 2015;50(1):186–90.

    Article  PubMed  Google Scholar 

  7. Fingeret AL, Stolar CJH, Cowles RA. Trends in operative experience of pediatric surgical residents in the United States and Canada. J Pediatr Surg. 2013;48(1):88–94.

    Article  PubMed  Google Scholar 

  8. Rowe MI, Courcoulas A, Reblock K. An analysis of the operative experience of North American pediatric surgical training programs and residents. J Pediatr Surg. 1997;32(2):184–91.

    Article  CAS  PubMed  Google Scholar 

  9. Gow KW, Drake FT, Aarabi S, Waldhausen JH. The ACGME case log: general surgery resident experience in pediatric surgery. J Pediatr Surg. 2013;48(8):1643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Freeman CL, Bennett TD, Casper TC, Larsen GY, Hubbard A, Wilkes J, Bratton S. Pediatric and neonatal extracorporeal membrane oxygenation: does center volume impact mortality? Crit Care Med. 2014;42(3):512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karamlou T, Vafaeezadeh M, Parrish AM, Cohen GA, Welke KF, Permut L, McMullan DM. Increased extracorporeal membrane oxygenation center case volume is associated with improved extracorporeal membrane oxygenation survival among pediatric patients. J Thorac Cardiovasc Surg. 2013;145(2):470–5.

    Article  PubMed  Google Scholar 

  12. Langer JC, To T. Does pediatric surgical specialty training affect outcome after Ramstedt pyloromyotomy? A population-based study. Pediatrics. 2004;113(5):1342–7.

    Article  PubMed  Google Scholar 

  13. Brain AJ, Roberts DS. Who should treat pyloric stenosis: the general or specialist pediatric surgeon? J Pediatr Surg. 1996;31(11):1535–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wei P-L, et al. Volume-outcome relation for acute appendicitis: evidence from a nationwide population-based study. PLoS ONE [Electronic Resource]. 2012;7(12):e52539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tasian GE, Wiebe DJ, Casale P. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows. J Urol. 2013;190(4 Suppl):1622–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nelson CP, Dunn RL, Wei JT. Gearhart JP. Surgical repair of bladder exstrophy in the modern era: contemporary practice patterns and the role of hospital case volume. J Urol. 2005;174(3):1099–102.

    Article  PubMed  Google Scholar 

  17. Allen SW, Gauvreau K, Bloom BT, Jenkins KJ. Evidence-based referral results in significantly reduced mortality after congenital heart surgery. Pediatrics. 2003;112(1 Pt 1):24–8.

    Article  PubMed  Google Scholar 

  18. Tunell WP. The role of pediatric surgery in general surgical education. J Pediatr Surg. 1974;9(5):743–7.

    Article  CAS  PubMed  Google Scholar 

  19. Stefanidis D, Colavita PD. Simulation in general surgery. In A. I. Levine et al., editors. The comprehensive textbook of healthcare simulation. New York: Springer Science; 2013. p. 353–66.

    Chapter  Google Scholar 

  20. Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL. Development of a model for training and evaluation of laparoscopic skills. Am J Surg. 1998;175(6):482–7.

    Article  CAS  PubMed  Google Scholar 

  21. McCluney AL, Vassiliou MC, Kaneva PA, Cao J, Stanbride DD, Feldman LS, et al. FLS simulator performance predicts intraoperative laparoscopic skill. Surg Endosc. 2007;21(11):1991–5.

    Article  CAS  PubMed  Google Scholar 

  22. Hamilton JM, Kahol K, Vankiuram M, Ashby A, Notrica DM, Ferrara JJ. Toward effective pediatric minimally invasive surgical simulation. J Pediatr Surg. 2011;46(1):138–44.

    Article  PubMed  Google Scholar 

  23. Cosper GH, Menon R, Hamann MS, Nakayama DK. Residency training in pyloromyotomy: a survey of 331 pediatric surgeons. J Pediatr Surg. 2008;43(1):102–8.

    Article  PubMed  Google Scholar 

  24. Davis SS Jr, Husain FA, Lin E, Nandipati KC, Perez S, Sweeney JF. Resident participation in index laparoscopic general surgical cases: impact of the learning environment on surgical outcomes. [Erratum appears in J Am Coll Surg. 2013 May;216(5):1034]. J Am Coll Surg. 2013;216(1):96–104.

    Article  PubMed  Google Scholar 

  25. Plymale M, Ruzic A, Hoskins J, French J, Skinner SC, Yuhas M, et al. A middle fidelity model is effective in teaching and retaining skill set needed to perform a laparoscopic pyloromyotomy. J Laparoendosc Adv Surg Tech Part A. 2010;20(6):569–73.

    Article  Google Scholar 

  26. Peter SD St, Barnhart DC, Ostlie DJ, Tsao K, Leys CM, Sharp SW, et al. Minimal vs extensive esophageal mobilization during laparoscopic fundoplication: a prospective randomized trial. J Pediatr Surg. 2011;46(1):163–8.

    Article  Google Scholar 

  27. Apelt N, Featherstone N, Giuliani S. Laparoscopic treatment of intussusception in children: a systematic review. J Pediatr Surg. 2013;48(8):1789–93.

    Article  PubMed  Google Scholar 

  28. Li B, Chen W-B, Zhou W-Y. Laparoscopic methods in the treatment of congenital duodenal obstruction for neonates. J Laparoendosc Adv Surg Tech Part A. 2013;23(10):881–4.

    Article  Google Scholar 

  29. Becmeur F, Reinberg O, Dimitriu C, Moog R, Philippe P. Thoracoscopic repair of congenital diaphragmatic hernia in children. Semin Pediatr Surg. 2007;16(4):238–44.

    Article  PubMed  Google Scholar 

  30. Matlow AG, Baker GR, Flintoft V, Cochrane D, Coffey M, Cohen E, et al. Adverse events among children in Canadian hospitals: the Canadian paediatric adverse events study. CMAJ Can Med Assoc J. 2012;184(13):E709–18.

    Article  Google Scholar 

  31. Lasko D, Zamakhshary M, Gerstle JT. Perception and use of minimal access surgery simulators in pediatric surgery training programs. J Pediatr Surg. 2009;44(5):1009–12.

    Article  PubMed  Google Scholar 

  32. Leach DC. A model for GME: shifting from process to outcomes. A progress report from the accreditation council for graduate medical education. Med Educ. 2004;38(1):12–4.

    Article  PubMed  Google Scholar 

  33. Frank JR, et al. Report of the CanMEDS phase IV working groups. 2005: Ottawa.

    Google Scholar 

  34. Hirschl R. The pediatric surgery milestone project: a joint initiative of the accreditation council for graduate medical education and the American board of surgery. 2014. http://acgme.org/acgmeweb/Portals/0/PDFs/Milestones/PediatricSurgeryMilestones.pdf. Accessed 11 Nov 2014.

  35. Frank JR, Snell L. Draft CanMEDS 2015 Physician Competency Framework—Series I. 2014, The royal college of physicians and surgeons of Canada: Ottawa.

    Google Scholar 

  36. Martin JA, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chipman JG, Schmitz CC. Using objective structured assessment of technical skills to evaluate a basic skills simulation curriculum for first-year surgical residents. J Am Coll Surg. 2009;209(3):364–70.e2.

    Article  PubMed  Google Scholar 

  38. Peters JH, Fried GM, Swanstrom LL, Soper NJ, Sillin LF, Schirmer B. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery. 2004;135(1):21–7.

    Article  PubMed  Google Scholar 

  39. Nakajima K, Wasa M, Takuguchi S, Taniguchi E, Soh H, Ohashi S, et al. A modular laparoscopic training program for pediatric surgeons. JSLS. 2003;7(1):33–7.

    PubMed  PubMed Central  Google Scholar 

  40. Ieiri S, Nakatsuji T, Higashi M, et al. Effectiveness of basic endoscopic surgical skill training for pediatric surgeons. Pediatr Surg Int. 2010;26(10):947–54.

    Article  PubMed  Google Scholar 

  41. Grober ED, Hamstra S, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu R, et al. The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. Ann Surg. 2004;240(2):374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills: a randomized controlled study. J Urol. 2002;167(3):1243–7.

    Article  PubMed  Google Scholar 

  43. Barsness KA, Rooney DM, Davis LM. Collaboration in simulation: the development and initial validation of a novel thoracoscopic neonatal simulator. J Pediatr Surg. 2013;48(6):1232–8.

    Article  PubMed  Google Scholar 

  44. Donoghue AJ, Durbin DR, Nadel FM, Stryjewski GR, Kost SI, Nadkarni VM. Perception of realism during mock resuscitations by pediatric housestaff: the impact of simulated physical features. Simul Healthc. 2010;5(1):16–20.

    Article  PubMed  Google Scholar 

  45. Azzie G, Gerstle JT, Nasr A, Lasko D, Green J, Henao O, et al. Development and validation of a pediatric laparoscopic surgery simulator. J Pediatr Surg. 2011;46(5):897–903.

    Article  PubMed  Google Scholar 

  46. Nasr A, Gerstle JT, Carrillo B, Azzie G. The pediatric laparoscopic surgery (PLS) simulator: methodology and results of further validation. J Pediatr Surg. 2013;48(10):2075–7.

    Article  PubMed  Google Scholar 

  47. Pranikoff T, Campbell BT, Travis J, Hirschl RB. Differences in outcome with subspecialty care: pyloromyotomy in North Carolina. J Pediatr Surg. 2002;37(3):352–6.

    Article  PubMed  Google Scholar 

  48. Safford SD, Pietrobon R, Safford KM, Martins H, Skinner MA, Rice HE. A study of 11,003 patients with hypertrophic pyloric stenosis and the association between surgeon and hospital volume and outcomes. J Pediatr Surg. 2005;40(6):967–72; discussion 972–3.

    Article  PubMed  Google Scholar 

  49. Haricharan RN, Aprahamian CH, Celik A, Harmon CM, Georgeson KE, Barnhart DC. Laparoscopic pyloromyotomy: effect of resident training on complications. J Pediatr Surg. 2008;43(1):97–101.

    Article  PubMed  Google Scholar 

  50. McHoney M, Giacomello L, Nah SA, De Coppi P, Kiely EM, Curry JI, et al. Thoracoscopic repair of congenital diaphragmatic hernia: intraoperative ventilation and recurrence. J Pediatr Surg. 2010;45(2):355–9.

    Article  PubMed  Google Scholar 

  51. Hawkinson EK, Davis LM, Barsness KA. Design and development of low-cost tissue replicas for simulation of rare neonatal congenital defects. Stud Health Technol Inform. 2014;196:159–62.

    PubMed  Google Scholar 

  52. Bidarkar SS, Deshpande A, Kaur M, Cohen RC. Porcine models for pediatric minimally invasive surgical training–a template for the future. J Laparoendosc Adv Surg Tech Part A. 2012;22(1):117–22.

    Article  Google Scholar 

  53. Allan CK, Pigula F, Bacha EA, Emani S, Fynn-Thompson F, Thiagarajan RR, et al. An extracorporeal membrane oxygenation cannulation curriculum featuring a novel integrated skills trainer leads to improved performance among pediatric cardiac surgery trainees. Simul Healthc. 2013;8(4):221–8.

    Article  PubMed  Google Scholar 

  54. Anderson JM, Boyle KB, Murphy AA, Yaeger KA, LeFlore J, et al. Simulating extracorporeal membrane oxygenation emergencies to improve human performance. Part I: methodologic and technologic innovations. Simul Healthc. 2006;1(4):220–7.

    Article  PubMed  Google Scholar 

  55. Anderson JM, Murphy AA, Boyle KB, Yaeger KA, Halamek LP. Simulating extracorporeal membrane oxygenation emergencies to improve human performance. Part II: assessment of technical and behavioral skills. Simul Healthc. 2006;1(4):228–32.

    Article  PubMed  Google Scholar 

  56. Allan CK, Thiagarajan RR, Beke D, Imprescia A, Kappus LJ, Garden A, et al. Simulation-based training delivered directly to the pediatric cardiac intensive care unit engenders preparedness, comfort, and decreased anxiety among multidisciplinary resuscitation teams. J Thorac Cardiovasc Surg. 2010;140(3):646–52.

    Article  PubMed  Google Scholar 

  57. Sanchez-Glanville C, Brindle ME, Spence T, Blackwood J, Drews T, Menzies S, Lopushinsky SR. The introduction of extracorporeal life support technology to a tertiary-care pediatric institution: smoothing the learning curve through inter-professional simulation training. J Pediatr Surg. 2015;50(5):798–804.

    Article  PubMed  Google Scholar 

  58. Nasr A, Carrillo B, Gerstle JT, Azzie G. Motion analysis in the pediatric laparoscopic surgery (PLS) simulator: validation and potential use in teaching and assessing surgical skills. J Pediatr Surg. 2014;49(5):791–4.

    Article  PubMed  Google Scholar 

  59. Marshall RL, Smith JS, Gorman PJ, Krummel TM, Haluck RS, Cooney RN, et al. Use of a human patient simulator in the development of resident trauma management skills. J Trauma Inj Infect Crit Care. 2001;51(1):17–21.

    Article  CAS  Google Scholar 

  60. http://www.royalcollege.ca/portal/page/portal/rc/resources/ppi/trik_course.

  61. Arriaga AF, Gawande AA, Raemer DB, Jones DB, Smink DS, Weinstock P, et al. Pilot testing of a model for insurer-driven, large-scale multicenter simulation training for operating room teams. Ann Surg. 2014;259(3):403–10.

    Article  PubMed  Google Scholar 

  62. Cumin D, Boyd MJ, Webster CS, Weller JM. A systematic review of simulation for multidisciplinary team training in operating rooms. Simul Healthc. 2013;8(3):171–9.

    Article  PubMed  Google Scholar 

  63. Acero NM, Motuk G, Luba J, Murphy M, McKelvey S, Kolb G, et al. Managing a surgical exsanguination emergency in the operating room through simulation: an interdisciplinary approach. J Surg Educ. 2012;69(6):759–65.

    Article  PubMed  Google Scholar 

  64. Mayer ML, Beil HA, von Allmen D. Distance to care and relative supply among pediatric surgical subspecialties. J Pediatr Surg. 2009;44(3):483–95.

    Article  PubMed  Google Scholar 

  65. Okrainec A, Smith L, Azzie G. Surgical simulation in Africa: the feasibility and impact of a 3-day fundamentals of laparoscopic surgery course. Surg Endosc. 2009;23(11):2493–8.

    Article  PubMed  Google Scholar 

  66. Okrainec A, Henao O, Azzie G. Telesimulation: an effective method for teaching the fundamentals of laparoscopic surgery in resource-restricted countries. Surg Endosc. 2010;24(2):417–22.

    Article  PubMed  Google Scholar 

  67. Mikrogianakis A, Kam A, Silver S, Bakanisi B, Henao O, Ikrainex A, Azzie G. Telesimulation: an innovative and effective tool for teaching novel intraosseous insertion techniques in developing countries. Acad Emerg Med. 2011;18(4):420–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Lopushinsky MD, MSc, FRCSC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lopushinsky, S., Brisseau, G. (2016). Simulation for Pediatric Surgery and Surgical Specialties. In: Grant, V., Cheng, A. (eds) Comprehensive Healthcare Simulation: Pediatrics. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-24187-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24187-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24185-2

  • Online ISBN: 978-3-319-24187-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics