Skip to main content

Endoscopic Energy Sources

  • Chapter
  • First Online:
The SAGES Manual Operating Through the Endoscope

Abstract

Energy devices have revolutionized endoscopic surgical techniques, extending the forefront of surgical care to new heights of advanced surgery through natural orifices. This has led to advances in clinical care of the patient—shorter hospital stay, less pain, and improved outcomes. Endoscopic energy devices allow dissection, hemostasis and coagulation in a manner similar to open or laparoscopic surgery but in a much more restricted space; therefore working knowledge is essential to provide safe and reliable use. Many of these devices are listed and validated by MAUDE (Manufacturer and User Facility Device Experience database, US Food and Drug Administration Center for Devices and Radiological Health).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Society for Gastrointestinal Endoscopy. Mucosal ablation devices. Gastrointest Endosc. 2008;68:1031–42.

    Article  Google Scholar 

  2. Laine L, Long GL, Bakos GJ, et al. Optimizing bipolar electrocautery for endoscopic hemostasis: assessment of factors influencing energy delivery and coagulum. Gastrointest Endosc. 2008;67:502–8.

    Article  PubMed  Google Scholar 

  3. American Society for Gastrointestinal Endoscopy. Endoscopic hemostatic devices. Gastrointest Endosc. 2009;69:987–96.

    Article  Google Scholar 

  4. Laine L. Multipolar electrocoagulation in the treatment of peptic ulcers with nonbleeding visible vessels. A prospective, controlled trial. Ann Intern Med. 1989;110:510–4.

    Article  CAS  PubMed  Google Scholar 

  5. Foutch PG. Angiodysplasia of the gastrointestinal tract. Am J Gastroenterol. 1993;88:807–18.

    CAS  PubMed  Google Scholar 

  6. Meining A, Wilhelm D, Burian M, et al. Development, standardization, and evaluation of NOTES cholecystectomy using a transsigmoid approach in the porcine model: an acute feasibility study. Endoscopy. 2007;39:860–4.

    Article  CAS  PubMed  Google Scholar 

  7. Cipolletta L, Bianco MA, Rotondano G, et al. Prospective comparison of argon plasma coagulator and heater probe in the endoscopic treatment of major peptic ulcer bleeding. Gastrointest Endosc. 1998;48(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  8. Hui WM, Ng MM, Lok AS, et al. A randomized comparative study of laser photocoagulation, heater probe, and bipolar electrocoagulation in the treatment of actively bleeding ulcers. Gastrointest Endosc. 1991;37:299–304.

    Article  CAS  PubMed  Google Scholar 

  9. Lin HJ, Wang K, Perng CL, et al. Heater probe thermocoagulation and multipolar electrocoagulation for arrest of peptic ulcer bleeding. A prospective, randomized comparative trial. J Clin Gastroenterol. 1995;21:99–102.

    Article  CAS  PubMed  Google Scholar 

  10. Chung SS, Lau JY, Sung JJ, et al. Randomised comparison between adrenaline injection alone and adrenaline injection plus heat probe treatment for actively bleeding ulcers. BMJ. 1997;314:1307–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lin HJ, Tseng GY, Perng CL, et al. Comparison of adrenaline injection and bipolar electrocoagulation for the arrest of peptic ulcer bleeding. Gut. 1999;44:715–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wong SK, Yu LM, Lau JY, et al. Prediction of therapeutic failure after adrenaline injection plus heater probe treatment in patients with bleeding peptic ulcer. Gut. 2002;50:322–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chung SC, Leung JW, Sung JY, et al. Injection or heat probe for bleeding ulcer. Gastroenterology. 1991;100:33–7.

    CAS  PubMed  Google Scholar 

  14. Cook DJ, Guyatt GH, Salena BJ, et al. Endoscopic therapy for acute nonvariceal upper gastrointestinal hemorrhage: a meta-analysis. Gastroenterology. 1992;102:139–48.

    CAS  PubMed  Google Scholar 

  15. Watson JP, Bennett MK, Griffin SM, et al. The tissue effect of argon plasma coagulation on gastric and esophageal mucosa. Gastrointest Endosc. 2000;52:342–5.

    Article  CAS  PubMed  Google Scholar 

  16. Lecleire S, Ben-Soussan E, Antonietti M, et al. Bleeding gastric vascular ectasia treated by argon plasma coagulation: a comparison between patients with and without cirrhosis. Gastrointest Endosc. 2008;67(2):219–25.

    Article  PubMed  Google Scholar 

  17. Boltin D, Gingold-Belfer R, Lichtenstein L, et al. Long-term treatment outcome of patients with gastric vascular ectasia treated with argon plasma coagulation. Eur J Gastroenterol Hepatol. 2014;26(6):588–93.

    CAS  PubMed  Google Scholar 

  18. Swan MP, Moore GT, Sievert W, et al. Efficacy and safety of single-session argon plasma coagulation in the management of chronic radiation proctitis. Gastrointest Endosc. 2010;72(1):150–4.

    Article  PubMed  Google Scholar 

  19. Johanns W, Luis W, Janssen J, et al. Argon plasma coagulation (APC) in gastroenterology: experimental and clinical experiences. Eur J Gastroenterol Hepatol. 1997;9:581–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wahab PJ, Mulder CJ, den Hartog G, et al. Argon plasma coagulation in flexible gastrointestinal endoscopy: pilot experiences. Endoscopy. 1997;29:176–81.

    Article  CAS  PubMed  Google Scholar 

  21. Ladas SD, Karamanolis G, Ben-Soussan E. Colonic gas explosion during therapeutic colonoscopy with electrocautery. World J Gastroenterol. 2007;13:5295–8.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Manner H, Plum N, Pech O, et al. Colon explosion during argon plasma coagulation. Gastrointest Endosc. 2008;67:1123–7.

    Article  PubMed  Google Scholar 

  23. Wang KK, Kim JY. Photodynamic therapy in Barrett’s esophagus. Gastrointest Endosc Clin N Am. 2003;13(3):483–9.

    Article  PubMed  Google Scholar 

  24. American Society of Gastrointestinal Endoscopy. Technology status evaluation update. Gastrointest Endosc. 2006;63:927–32.

    Article  Google Scholar 

  25. Wolfsen HC, Ng CS. Cutaneous consequences of photodynamic therapy. Cutis. 2002;69:140–2.

    PubMed  Google Scholar 

  26. Spechler SJ, Sharma P, Souza RF. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology. 2011;140:1084–91.

    Article  PubMed  Google Scholar 

  27. Shaheen NJ, Sharma P, Overholt BF. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360:2277–88.

    Article  CAS  PubMed  Google Scholar 

  28. Eric SO, Nan L, Nicholas JS. Efficacy and durability of radiofrequency ablation for Barrett’s esophagus: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1245–55.

    Article  Google Scholar 

  29. Ganz RA, Utley DS, Stern RA. Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus. Gastrointest Endosc. 2004;60:1002–10.

    Article  PubMed  Google Scholar 

  30. Dunkin BJ, Martin J, Bejarano PA. Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device. Surg Endosc. 2006;20:125–30.

    Article  CAS  PubMed  Google Scholar 

  31. Smith CD, Bejarano PA, Melvin WS. Endoscopic ablation of intestinal metaplasia containing high grade dysplasia in esophagectomy patients using a balloon-based ablation system. Surg Endosc. 2007;21:560–9.

    Article  CAS  PubMed  Google Scholar 

  32. Haidry RJ, Dunn JM, Butt MA, et al. Radiofrequency ablation and endoscopic mucosal resection for dysplastic Barrett’s esophagus and early esophageal adenocarcinoma: outcomes of the UK National Halo RFA Registry. Gastroenterology. 2013;145(1):87–95.

    Article  PubMed  Google Scholar 

  33. Franciosa M, Triadafilopoulos G, Mashimo H. Stretta radiofrequency treatment for GERD: a safe and effective modality. Gastroenterol Res Pract. 2013;2013:783–815.

    Article  Google Scholar 

  34. Noar M, Squires P, Noar E, Lee M. Long-term maintenance effect of radiofrequency energy delivery for refractory GERD: a decade later. Surg Endosc. 2014;28(8):2323–33.

    Article  PubMed  Google Scholar 

  35. Stepp H, Sroka R. Possibilities of lasers within NOTES. Minim Invasive Ther Allied Technol. 2010;19(5):274–80.

    Article  PubMed  Google Scholar 

  36. Freitas ML, Bell RL, Duffy AJ. Choledocholithiasis: evolving standards for diagnosis and management. World J Gastroenterol. 2006;12:3162–7.

    PubMed Central  PubMed  Google Scholar 

  37. McHenry L, Lehman G. Difficult bile duct stones. Curr Treat Options Gastroenterol. 2006;9:123–32.

    Article  PubMed  Google Scholar 

  38. Neuhaus H, Zillinger C, Born P, et al. Randomized study of intracorporeal laser lithotripsy versus extracorporeal shock-wave lithotripsy for difficult bile duct stones. Gastrointest Endosc. 1998;47:327–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy I. Cha M.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 SAGES

About this chapter

Cite this chapter

Cha, A.I., Ramdon, A.R. (2016). Endoscopic Energy Sources. In: Kroh, M., Reavis, K. (eds) The SAGES Manual Operating Through the Endoscope. Springer, Cham. https://doi.org/10.1007/978-3-319-24145-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24145-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24143-2

  • Online ISBN: 978-3-319-24145-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics