Skip to main content

Ultraviolet Light-Emitting Diodes for Water Disinfection

  • Chapter
  • First Online:
III-Nitride Ultraviolet Emitters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 227))

Abstract

This chapter presents basic principles of water disinfection using UV light. It provides a comparison of conventional UV light sources and UV LEDs. Additionally, based on a detailed case study, the potential of UV LEDs for water disinfection systems is discussed. This study presents results of static and flow-through tests conducted with UV LEDs of different emission wavelengths.

The original version of this chapter was revised: The spelling of the first author’s name was corrected. The erratum to this chapter is available at DOI 10.1007/978-3-319-24100-5_16

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-24100-5_16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The same fluence is needed at both wavelengths to obtain a comparable inactivation result.

  2. 2.

    External quantum efficiencies: number of photons emitted into free space per second divided by the number of electrons injected into LED per second.

  3. 3.

    Typical external quantum efficiencies of LEDs used for lightning applications are in the range of 60–70 % [34].

  4. 4.

    Defect density: number of local faults originating from the production of semiconductors per surface unit.

  5. 5.

    For comparison: the 282 nm LEDs applied during this study had an output power of 0.65 mW at 20 mA.

  6. 6.

    UVTcm (%): percent transmittance in the medium when the path length is 1 cm and the wavelength is 254 nm; a (1/m): spectral absorption coefficient at a specific wavelength; relates to a 1 m path length.

  7. 7.

    The REF may also be determined using dyed microsphere actinometry cp. e.g., [3].

  8. 8.

    The waste water treatment plant Ruhleben treats combined municipal waste water with parts of rainwater by mechanical separation, activated sludge process with nitrification, post-denitrification, and biological phosphorus removal.

  9. 9.

    These CBD tests conducted with a mercury lamp was performed by an external laboratory (Institute of Hygiene and Public Health, University of Bonn).

References

  1. V. Adivarahan, A. Heidari, B. Zhang, Q. Fareed, S. Hwang, M. Islam, A. Khan, 280 nm deep ultraviolet light emitting diode lamp with an AlGaN multiple quantum well active region. Appl. Phys. Exp. 2(102101) (2009)

    Google Scholar 

  2. J. Bak, S.D. Ladefoged, M. Tvede, T. begovic, A. Gregersen, Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes. Biofouling 26(1), 31–38 (2010)

    Article  Google Scholar 

  3. E.R. Blatchley, C. Shen, O.K. Scheible, J.P. Robinson, K. Ragheb, D.E. Bergstrom, D. Rokjer, Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres. Water Res. 42(3), 677–688 (2008)

    Article  Google Scholar 

  4. J.R. Bolton, Calculation of ultraviolet fluence rate distributions in an annular reactor: Significance of refraction and reflection. Water Res. 34(13), 3315–3324 (2000)

    Article  Google Scholar 

  5. J.R. Bolton, C.A. Cotton, The Ultraviolet Disinfection Handbook (American Water Works Association, Denver, 2008)

    Google Scholar 

  6. J.R. Bolton, K.G. Linden, Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. ASCE 129(3), 209–215 (2003)

    Article  Google Scholar 

  7. A. Cabaj, R. Sommer, W. Pribil, T. Haider, The spectral UV sensitivity of microorganisms used in biodosimetry. Water Suppl. IWA Publ. 2(3), 175–181 (2002)

    Google Scholar 

  8. R.E. Cantwell, R. Hofmann, Inactivation of indigenous coliform bacteria in unfiltered surface water by ultraviolet light. Water Res. 42(10–11), 2729–2735 (2008)

    Article  Google Scholar 

  9. E. Caron, G. Chevrefils, B. Barbeau, P. Payment, M. Prévost, Impact of microparticles on UV disinfection of indigenous aerobic spores. Water Res. 41, 4546–4556 (2007)

    Article  Google Scholar 

  10. C. Chatterley, K. Linden, Demonstration and evaluation of germicidal UV-LEDs for point-of-use water disinfection. J. Water Health IWA Publ. 8(3), 479–486 (2010)

    Article  Google Scholar 

  11. R.Z. Chen, S.A. Craik, J.R. Bolton, Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: Information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water. Water Res. 43(20), 5087–5096 (2009)

    Article  Google Scholar 

  12. A.C. Chevremont, A.M. Farnet, M. Sergent, B. Coulomb, J.L. Boudenne, Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs. Desalination 285, 219–225 (2012)

    Article  Google Scholar 

  13. S.A. Craik, G.R. Finch, J.R. Bolton, M. Belosevic, Inactivation of Giardia muris cysts using medium-pressure ultraviolet radiation in filtered drinking water. Water Res. 34(18), 4325–4332 (2000)

    Article  Google Scholar 

  14. M.H. Crawford, M.A. Banas, M.P. Ross, D.S. Ruby, J.S. Nelson, R. Boucher, A.A. Allerman, Final LDRD Report: Ultraviolet Water Purification Systems for Rural Environments and Mobile Applications (Sandria National Laboratories, Albuquerque, New Mexico, 2005), pp. 1–37

    Google Scholar 

  15. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, Disinfection with ultraviolet light, in Water Treatment: Principles and Design, Chapter 13.8 (Wiley, Hoboken, 2005)

    Google Scholar 

  16. DVGW, Arbeitsblatt W 290: Trinkwasserdesinfektion - Einsatz und Anforderungskriterien (Deutsche Vereinigung des Gas- und Wasserfaches, Bonn, 2005)

    Google Scholar 

  17. DVGW, Arbeitsblatt W 294-1: UV-Geräte zur Desinfektion in der Wasserversorgung Teil 1: Anforderungen an Beschaffenheit, Funktion und Betrieb (Deutsche Vereinigung des Gas- und Wasserfaches, Bonn, 2006a)

    Google Scholar 

  18. DVGW, Arbeitsblatt W 294-2: UV-Geräte zur Desinfektion in der Wasserversorgung Teil 2: Prüfung von Beschaffenheit, Funktion und Desinfektionswirkung (Deutsche Vereinigung des Gas- und Wasserfaches, Bonn, 2006b)

    Google Scholar 

  19. F. Embacher, Mathematische Grundlagen für das Lehramtsstudium Physik (Vieweg + Teubner | GWV Fachverlage GmbH, Wiesbaden, 2011)

    Google Scholar 

  20. F.L. Gates, A study of the bactericidal action of ultraviolet light: III. The absorption of ultraviolet light by bacteria. J. Gen. Physiol. 14(1), 31–42 (1930)

    Article  Google Scholar 

  21. W. Harm, Biological Effects of Ultraviolet Radiation (Cambridge University Press, New York, 1980)

    Google Scholar 

  22. W.A.M. Hijnen, E.F. Beerendonk, G.J. Medema, Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 40(1), 3–22 (2006)

    Article  Google Scholar 

  23. K. Höll, Wasser. Nutzung im Kreislauf. Hygiene, Analyse und Bewertung. (Walter de Gruyter, Berlin, 2002)

    Google Scholar 

  24. A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2, 77–84 (2008)

    Article  Google Scholar 

  25. M. Kneissl, Ultraviolet light-emitting diodes promise new solutions for water purification. World Water & Environmental Engineering 31(3), 35 (2008)

    Google Scholar 

  26. T. Kolbe, Einfluss des Heterostrukturdesigns auf die Effzienz und die optische Polarisation von (In)AlGaN-basierten Leuchtdioden im ultravioletten Spektralbereich. Ph.D. Thesis, Fakultät II - Mathematik und Naturwissenschaften; Technische Universität Berlin, Berlin, 2012

    Google Scholar 

  27. A. Kolch, UV-Disinfection of drinking water—the new DVGW work sheet 94 Part 1–3. IUVA News 9, 17–20 (2007)

    Google Scholar 

  28. J. Kuo, C.L. Chen, M. Nellor, Standardized collimated beam testing protocol for water/wastewater ultraviolet disinfection. J. Environ. Eng. ASCE 129(8), 774–779 (2003)

    Article  Google Scholar 

  29. L.-S. Lin, C.T. Johnston, E.R. Blatchley III, Inorganic fouling at quartz: Water interfaces in ultraviolet photoreactors: II. Temporal and spatial distributions. Water Res. 33(15), 3330–3338 (1999)

    Article  Google Scholar 

  30. D. Liu, Numerical Simulation of UV Disinfection Reactors: Impact of Fluence Rate Distribution and Turbulence Modeling. Dissertation, North Carolina State University, 2004

    Google Scholar 

  31. M.T. Madigan, J.M. Martinko, J. Parker, Makromoleküle. In: Brock Mikrobiologie, Chapter 24 (W. Goebel. Spektrum Akademischer Verlag GmbH, Heidelberg, 2001)

    Google Scholar 

  32. J.P. Malley, UV in water treatment issues for the next decade. IUVA News 12(1), 18–25 (2010)

    Google Scholar 

  33. H. Mamane-Gravetz, K.G. Linden, A. Cabaj, R. Sommer, Spectral sensitivity of Bacillus subtilis spores and MS2 Coliphage for validation testing of ultraviolet reactors for water disinfection. Environ. Sci. Technol. 39(20), 7845–7852 (2005)

    Article  Google Scholar 

  34. T. Miyoshi, T. Yanamoto, T. Kozaki, S.-I. Nagahama, Y. Narukawa, M. Sano, T. Yamada, T. Mukai, Recent status of white LEDs and nitride LDs (2008)

    Google Scholar 

  35. K.Y. Nelson, D.W. McMartin, C.K. Yost, K.J. Runtz, T. Ono, Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination. Environ. Sci. Pollut. Res. 20(8), 5441–5448 (2013)

    Google Scholar 

  36. K. Oguma, R. Kita, H. Sakai, M. Murakami, S. Takizawa, Application of UV light emitting diodes to batch and flow-through water disinfection systems. Desalination 328, 24–30 (2013)

    Article  Google Scholar 

  37. M. Oliver, UV cleaning system performance validation. IUVA News 5(1)

    Google Scholar 

  38. ÖNORM, Plants for Disinfection of Water Using Ultraviolet Radiation: Requirements and Testing, Part 1: Low Pressure Mercury Lamp Plants (Austrian Standards Institute, Vienna, 2001), www.on-norm.at

  39. J. Peng, Y. Qiu, R. Gehr, Characterization of permanent fouling on the surfaces of UV lamps used for wastewater disinfection. Water Environ. Res. 77(4), 309–322 (2005)

    Article  Google Scholar 

  40. R.G. Qualls, J.D. Johnson, Bioassay and dose measurement in UV disinfection. Appl. Environ. Microbiol. 45(3), 872–877 (1983)

    Google Scholar 

  41. C. Reichl, C. Buchner, G. Hirschmann, R. Sommer, A. Cabaj, Development of a Simulation Method to Predict UV Disinfection Reactor Performance and Comparison to Biodosimetric Measurements. Conference on Modelling Fluid Flow, Budapest (2006)

    Google Scholar 

  42. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, M. Wraback, AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10 %. Appl. Phys. Exp. 5(8), 082101 1–3 (2012)

    Google Scholar 

  43. M. Sheriff, R. Gehr, Laboratory investigation of inorganic fouling of low pressure UV disinfection lamps. Water Qual. Res. J. Can. 36(1), 71–92 (2001)

    Google Scholar 

  44. R. Sommer, A. Cabaj, T. Sandu, M. Lhotsky, Measurement of UV radiation using suspensions of microorganisms. J. Photochem. Photobiol. B 53(1–3), 1–6 (1999)

    Article  Google Scholar 

  45. R. Sommer, A. Cabaj, D. Schoenen, J. Gebel, A. Kolch, A.H. Havelaar, F.M. Schets, Comparison of three laboratory devices for UV-inactivation of microorganisms. Water Sci. Technol. 31(5–6), 147–156 (1995)

    Article  Google Scholar 

  46. M.R. Templeton, R.C. Andrews, R. Hofmann, Inactivation of particle-associated viral surrogates by ultraviolet light. Water Res. 39, 3487–3500 (2005)

    Article  Google Scholar 

  47. USEPA, Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule. 815-R-06-007, Washington DC (2006)

    Google Scholar 

  48. S. Vilhunen, H. Särkkä, M. Sillanpää, Ultraviolet light-emitting diodes in water disinfection. Environ. Sci. Pollut. Res. 16(4), 439–442 (2009)

    Article  Google Scholar 

  49. I.W. Wait, C.T. Johnston, E.R. Blatchley III, The influence of oxidation reduction potential and water treatment processes on quartz lamp sleeve fouling in ultraviolet disinfection reactors. Water Res. 41(11), 2427–2436 (2007)

    Article  Google Scholar 

  50. I.W. Wait, M. Yonkin, E.R. Blatchley III, Quartz lamp sleeve fouling and cleaning system evaluation at the Albany, New York Loudonville UV treatment facility. IUVA News 8(4), 11–14 (2006)

    Google Scholar 

  51. S. Wengraitis, P. McCubbin, M.M. Wade, T.D. Biggs, S. Hall, L.I. Williams, A.W. Zulich, Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles. Photochem. Photobiol. 89, 127–131 (2013)

    Google Scholar 

  52. WHO, Water for Health—WHO Guidelines for Drinking-water Quality (WHO Press, 2010)

    Google Scholar 

  53. M.A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, M. Jekel, Application of GaN-based ultraviolet-C light emitting diodes—UV LEDs—for water disinfection. Water Res. 45(3), 1481–1489 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Boris Lesjean and Eric Hoa from the Berlin Centre of Competence for Water and Florencio Martin from Veolia Water, Anjou Recherche, for their helpful expertise, Katharina Kutz for her laboratory work and the Berliner Wasserbetriebe for providing the samples of secondary effluents. This work was partially supported by the Berlin Centre of Competence for Water in the frame of the FP6 project TECHNEAU, and financed by the European Commission and Veolia Water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Kolbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lange, M.A., Kolbe, T., Jekel, M. (2016). Ultraviolet Light-Emitting Diodes for Water Disinfection. In: Kneissl, M., Rass, J. (eds) III-Nitride Ultraviolet Emitters. Springer Series in Materials Science, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-24100-5_10

Download citation

Publish with us

Policies and ethics