Skip to main content

Quantum Information Networks with Superconducting Nanowire Single-Photon Detectors

  • Chapter
  • First Online:
Superconducting Devices in Quantum Optics

Part of the book series: Quantum Science and Technology ((QST))

  • 3175 Accesses

Abstract

The advent of high performance practical superconducting nanowire single photon detectors (SNSPDs) has enabled rapid progress in a range of quantum information technologies, including quantum key distribution, characterization of single photon sources and quantum interface technologies. This chapter gives an overview of these recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001)

    Google Scholar 

  2. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)

    Article  ADS  Google Scholar 

  3. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, Z. Wang, Multichannel SNSPD system with high detection efficiency at telecommunication wavelength. Opt. Lett. 35, 2133–2135 (2010)

    Article  ADS  Google Scholar 

  4. R.H. Hadfield, M.J. Stevens, S.S. Gruber, A.J. Miller, R.E. Schwall, R.P. Mirin, S.W. Nam, Single photon source characterization with a superconducting single photon detector. Opt. Express 13, 10846–10853 (2005)

    Article  ADS  Google Scholar 

  5. S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, Development of SNSPD System with Gifford-McMahon Cryocooler. IEEE Trans. Appl. Supercond. 19, 332–335 (2009)

    Article  ADS  Google Scholar 

  6. R.H. Hadfield, J.L. Habif, J. Schlafer, R.E. Schwall, S.W. Nam, Quantum key distribution at 1550 nm with twin superconducting single-photon detectors. Appl. Phys. Lett. 89, 241129 (2006)

    Article  ADS  Google Scholar 

  7. R.J. Collins, R.H. Hadfield, V. Fernandez, S.W. Nam, G.S. Buller, Low timing jitter detector for gigahertz quantum key distribution. Electron. Lett. 43, 180–182 (2007)

    Article  Google Scholar 

  8. H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007)

    Google Scholar 

  9. D. Stucki, N. Walenta, F. Vannel, R.T. Thew, N. Gisin, H. Zbinden, S. Gray, C.R. Towery, S. Ten, High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009)

    Article  ADS  Google Scholar 

  10. A. Tanaka, M. Fujiwara, S.W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, A. Tomita, Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. Opt. Express 16, 11354–11360 (2008)

    Article  ADS  Google Scholar 

  11. T. Honjo, S.W. Nam, H. Takesue, Q. Zhang, H. Kamada1, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, Y. Yamamoto, Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16, 19118–19126 (2008)

    Google Scholar 

  12. C.M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R.H. Hadfield, J.L. O’Brien, Operating quantum waveguide circuits with superconducting single-photon detectors. Appl. Phys. Lett. 96, 211101 (2010)

    Article  ADS  Google Scholar 

  13. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sasaki, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J.F. Dynes, A.R. Dixon, A.W. Sharpe, Z.L. Yuan, A.J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, A. Zeilinger, Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011)

    Article  ADS  Google Scholar 

  14. K. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, A. Tajima, High-speed wavelength-division multiplexing quantum key distribution system. Opt. Lett. 37, 223–225 (2012)

    Article  ADS  Google Scholar 

  15. A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, A. Tajima, High-speed quantum key distribution system for 1-Mbps real-time key generation. IEEE J. Quantum Electron. 48, 542–550 (2012)

    Google Scholar 

  16. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors. Phys. Rev. A 87, 010301(R) (2013)

    Article  ADS  Google Scholar 

  17. R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation. Phys. Rev. A 88, 042317 (2013)

    Article  ADS  Google Scholar 

  18. R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level. Opt. Express 21, 27865 (2013)

    Article  ADS  Google Scholar 

  19. M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, Photon level crosstalk between parallel fibers installed in urban area. Opt. Express 18, 22199–22207 (2010)

    Google Scholar 

  20. R.B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors. Opt. Commun. 336, 47 (2015)

    Article  ADS  Google Scholar 

  21. R.B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, Widely tunable single photon source with high purity at telecom wavelength. Opt. Express 21, 10659–10666 (2013)

    Google Scholar 

  22. R.B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, M. Sasaki, Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. Opt. Express 22(10), 11498–11507 (2014)

    Article  ADS  Google Scholar 

  23. R.B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength. Phys. Rev. A 87, 063801 (2013)

    Google Scholar 

  24. R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond. Opt. Express 22, 11205 (2014)

    Article  ADS  Google Scholar 

  25. X. Hu, T. Zhong, J.E. White, E.A. Dauler, F. Najafi, C.H. Herder, F.N.C. Wong, K. Berggren, Fiber-coupled nanowire photon counter at 1550 nm with 24 % system detection efficiency. Opt. Lett. 34, 3607–3609 (2009)

    Article  ADS  Google Scholar 

  26. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, S.W. Nam, Detecting single infrared photons with 93 % system efficiency. Nat. Photon. 7, 210–214 (2013)

    Google Scholar 

  27. D. Rosenberg, A.J. Kerman, R.J. Molnar, E.A. Dauler, High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440–1447 (2013)

    Article  ADS  Google Scholar 

  28. S. Miki, T. Yamashita, H. Terai, Z. Wang, High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt. Express 21, 10208 (2013)

    Google Scholar 

  29. E.A. Dauler, M.E. Grein, A.J. Kerman, F. Marsili, S. Miki, S.W. Nam, M.D. Shaw, H. Terai, V.B. Verma, T. Yamashita, Review of superconducting nanowire single-photon detector system design options and demonstrated performance. Opt. Eng. 53, 081907 (2014)

    Google Scholar 

  30. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Google Scholar 

  31. G.S. Vernam, Secret signaling system, U.S. Patent 1 310 719, Jul 1919

    Google Scholar 

  32. ID Quantique. http://www.idquantique.com/

  33. MagiQ Technologies, Inc. http://www.magiqtech.com/MagiQ/Home.html

  34. QuintessenceLabs Pty Ltd. http://www.quintessencelabs.com/

  35. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, Current status of the DARPA quantum network, in Quantum Information and Computation III, Proceedings of SPIE, ed. by E.J. Donkor, A.R. Pirich, H.E. Brandt, vol. 5815, pp. 138-149 (2005). arXiv:quant-ph/0503058v2

  36. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A.W. Sharpe, A.J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R.T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z.L. Yuan, H. Zbinden, A. Zeilinger, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

    Google Scholar 

  37. T. Länger, G. Lenhart, Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD. New J. Phys. 11, 055051 (2009)

    Google Scholar 

  38. Swiss quantum. http://www.swissquantum.com/

  39. A. Mirza, F. Petruccione, Realizing long-term quantum cryptography. J. Opt. Soc. Am. B 27, A185–A188 (2010)

    Google Scholar 

  40. Z.L. Yuan, A.J. Shields, Continuous operation of a one-way quantum key distribution system over installed telecom fibre. Opt. Express 13, 660–665 (2005)

    Google Scholar 

  41. T.E. Chapuran, P. Toliver, N.A. Peters, J. Jackel, M.S. Goodman, R.J. Runser, S.R. McNown, N. Dallmann, R.J. Hughes, K.P. McCabe, J.E. Nordholt, C.G. Peterson, K.T. Tyagi, L. Mercer, H. Dardy, Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009)

    Google Scholar 

  42. D. Lancho, J. Martinez-Mateo, D. Elkouss, M. Soto, V. Martin, QKD in standard optical telecommunications networks, Quantum Communication and Quantum Networking, vol. 36, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, Heidelberg, 2010), pp. 142–149

    Chapter  Google Scholar 

  43. S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, Z.-F. Han, Field test of wavelength-saving quantum key distribution network. Opt. Lett. 35(14), 2454–2456 (2010)

    Article  ADS  Google Scholar 

  44. T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18, 27217–27225 (2010)

    Google Scholar 

  45. W.-Y. Hwang, Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  46. H.-K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  47. X.-B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  48. K. Inoue, E. Waks, Y. Yamamoto, Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)

    Google Scholar 

  49. S. Obana, A. Tanaka, General purpose hash function family computer and shared key creating system. Patent WO/2007/034685 (29 March 2007)

    Google Scholar 

  50. X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Practical decoy state for quantum key distribution. Phys. Rev. A. 72, 012326 (2005)

    Article  ADS  Google Scholar 

  51. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, L. Qian, Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 230503 (2006)

    Google Scholar 

  52. E. Waks, H. Takesue, Y. Yamamoto, Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73, 012344 (2006)

    Google Scholar 

  53. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, Y. Tokura, Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt. Express 17, 9053–9061 (2009)

    Google Scholar 

  54. The Third International Conference on Updating Quantum Cryptography and Communications (UQCC2010). http://www.uqcc2010.org/

  55. The “Tokyo QKD Network video” of the network operation demonstrated during the UQCC2010 conference is available at http://www.uqcc2010.org/

  56. Japan Gigabit Network 2 plus. http://www.jgn.nict.go.jp/jgn2plus/english/index.html

  57. http://www.Optigate.jp/products/cable/szcable.html

  58. D.C. Chang, E.F. Kuester, Radiation and propagation of a surface-wave mode on a curved open waveguide of arbitrary cross section. Radio Sci. 11, 449–457 (1976)

    Article  ADS  Google Scholar 

  59. A.R. Dixon, Z.L. Yuan, J.F. Dynes, A.W. Sharpe, A.J. Shields, Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96, 161102 (2010)

    Google Scholar 

  60. P.G. Evans, R.S. Bennink, W.P. Grice, T.S. Humble, J. Schaake, Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. Phys. Rev. Lett. 105, 253–601 (2010)

    Google Scholar 

  61. Y.F. Huang, B.H. Liu, L. Peng, Y.H. Li, L. Li, C.F. Li, G.C. Guo, Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state, Nat. Commun. 2 546(1–6) (2011)

    Google Scholar 

  62. F. König, F.N.C. Wong, Extended phase matching of second-harmonic generation in periodically poled \({\rm KTiOPO}_{4}\) with zero group-velocity mismatch. Appl. Phys. Lett. 84, 1644 (2004)

    Google Scholar 

  63. S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, NbN superconducting single-photon detectors prepared on single-crystal MgO substrates. IEEE Trans. Appl. Superconduct. 17, 285–288 (2007)

    Google Scholar 

  64. X.C. Yao, T.X. Wang, P. Xu, H. Lu, G.S. Pan, X.H. Bao, C.Z. Peng, C.Y. Lu, Y.A. Chen, J.W. Pan, Observation of eight-photon entanglement. Nat. Photon. 6, 225–228 (2012)

    Google Scholar 

  65. J. Yin, J.G. Ren, H. Lu, Y. Cao, H.L. Yong, T.P. Wu, C. Liu, S.K. Liao, F. Zhou, Y. Jiang, X.D. Cai, P. Xu, G.S. Pan, J.J. Jia, Y.M. Huang, H. Yin, J.Y. Wang, Y.A. Chen, C.Z. Peng, J.W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre freespace channels. Nature 488, 185–188 (2012)

    Google Scholar 

  66. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  67. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  68. N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  69. J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter, Heralded entanglement between widely separated atoms. Science 337, 72 (2012)

    Article  ADS  Google Scholar 

  70. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  71. P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)

    Article  ADS  Google Scholar 

  72. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116–120 (2005)

    Article  ADS  Google Scholar 

  73. C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, M.M. Fejer, H. Takesue, Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005)

    Google Scholar 

  74. A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010)

    Article  Google Scholar 

  75. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 537 (2011)

    Article  ADS  Google Scholar 

  76. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, T.W. Hänsch, Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbo3 ridge waveguide. Opt. Express 17, 17792–17800 (2009)

    Article  ADS  Google Scholar 

  77. S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)

    Article  ADS  Google Scholar 

  78. S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)

    Article  ADS  Google Scholar 

  79. J.S. Pelc, L. Yu, K. De Greve, P.L. McMahon, C.M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, Y. Yamamoto, M.M. Fejer, Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express 20, 27510–27519 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehito Miki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miki, S., Fujiwara, M., Jin, RB., Yamamoto, T., Sasaki, M. (2016). Quantum Information Networks with Superconducting Nanowire Single-Photon Detectors. In: Hadfield, R., Johansson, G. (eds) Superconducting Devices in Quantum Optics. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-24091-6_5

Download citation

Publish with us

Policies and ethics