Skip to main content

Sex Differences in Normal Pulmonary Structure and Function at Rest and During Exercise

  • Chapter
  • First Online:
Gender, Sex Hormones and Respiratory Disease

Part of the book series: Respiratory Medicine ((RM))

  • 758 Accesses

Abstract

Women have been reported to exhibit several anatomic and physiologic characteristics that distinguish their responses to exercise from those of men. These factors have been shown to influence the training response and contribute to lower maximal aerobic power in women. Additionally, the reproductive hormones, estrogen and progesterone, can influence ventilation, substrate metabolism, thermoregulation, and pulmonary function during exercise. Pulmonary structural and morphologic differences between men and women include smaller vital capacity and maximal expiratory flow rates, reduced airway diameter, and a smaller diffusion surface in women compared to age- and height-matched men. These differences may have an effect on the integrated ventilatory response, on respiratory muscle work, and on pulmonary gas exchange during exercise. Specifically, recent evidence suggests that during heavy exercise, women demonstrate greater expiratory flow limitation, an increased work of breathing, and perhaps greater exercise-induced arterial hypoxemia compared to men. The consequence of these pulmonary effects has the potential to adversely affect aerobic capacity and exercise tolerance in women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lebrun CM. Effect of different phases of the menstrual cycle and oral contraceptives on athletic performance. Sports Med. 1993;16(6):400–30.

    CAS  PubMed  Google Scholar 

  2. Lebrun CM, McKenzie DC, Prior JC, Taunton JE. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc. 1995;27(3):437–44.

    CAS  PubMed  Google Scholar 

  3. Moore LG, McCullough RE, Weil JV. Increased HVR in pregnancy: relationship to hormonal and metabolic changes. J Appl Physiol. 1987;62:158–63.

    CAS  PubMed  Google Scholar 

  4. England SJ, Farhi LE. Fluctuations in alveolar CO2 and in base excess during the menstrual cycle. Respir Physiol. 1976;26:157–61.

    CAS  PubMed  Google Scholar 

  5. Schoene RB, Robertson HT, Pierson DJ. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol. 1981;50:1300–5.

    CAS  PubMed  Google Scholar 

  6. Dombovy ML, Bonekat HW, Williams TJ, Staats BA. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sports Exerc. 1987;19(2):111–7.

    CAS  PubMed  Google Scholar 

  7. McClaran SR, Harms CA, Pegelow DF, Dempsey JA. Smaller lungs in women affect exercise hyperpnea. J Appl Physiol. 1998;84:1872–81.

    CAS  PubMed  Google Scholar 

  8. Zhao XJ, McKerr G, Dong Z, Higgins CA, Carson J, Yang ZQ, Hannigan BM. Expression of oestrogen and progesterone receptors by mast cells alone, but not lymphocytes, macrophages, or other immune cells in human upper airways. Thorax. 2001;56:205–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beidleman BA, Rock PB, Muza SR, et al. Exercise VE and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol. 1999;86:1519–26.

    CAS  PubMed  Google Scholar 

  10. White DP, Douglas NJ, Pickett CK, et al. Sexual influence on control of breathing. J Appl Physiol. 1983;54:874–9.

    CAS  PubMed  Google Scholar 

  11. Aitken ML, Franklin JL, Pierson DJ, et al. Influence of body size and gender on control of ventilation. J Appl Physiol. 1986;60:1894–9.

    CAS  PubMed  Google Scholar 

  12. Carlberg KA, Fregly MJ, Fahey M. Effects of chronic estrogen treatment on water exchange in rats. Am J Physiol. 1984;247(1):E101–10.

    CAS  PubMed  Google Scholar 

  13. Sansores RH, Abboud RT, Kennell C, Haynes N. The effect of menstruation on the pulmonary carbon monoxide diffusing capacity. Am J Respir Crit Care Med. 1995;152:381–4.

    CAS  PubMed  Google Scholar 

  14. Dempsey JA. Is the lung built for exercise? Med Sci Sports Exerc. 1986;18:161–75.

    Google Scholar 

  15. Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis. 1980;121:339–42.

    CAS  PubMed  Google Scholar 

  16. Thurlbeck WM. Postnatal human lung growth. Thorax. 1982;37:564–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwartz J, Katz SA, Fegley RW, Tockman MS. Sex and race differences in the development of lung function. Am Rev Respir Dis. 1988;138:1415–21.

    CAS  PubMed  Google Scholar 

  18. Rohrbach MC, Perret C, Kayser B, Boutellier U, Spengler CM. Task failure from inspiratory resistive loaded breathing: a role from inspiratory muscle fatigue? Eur J Appl Physiol. 2003;90:405–10.

    PubMed  Google Scholar 

  19. Johnson BD, Saupe KW, Dempsey JA. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol. 1992;73:874–86.

    CAS  PubMed  Google Scholar 

  20. Brooks LJ, Byard PJ, Helms RC, Foulke JM, Strohl KP. Relationship between lung volume and trachea size assessed by acoustic reflection. J Appl Physiol. 1988;64(3):1050–4.

    CAS  PubMed  Google Scholar 

  21. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol. 1974;37(1):67–74.

    CAS  PubMed  Google Scholar 

  22. Sheel AW, Guenette JA, Yuan R, Holy L, Mayo JR, McWilliams Lam S, Coxson HO. Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers. J Appl Physiol. 2009;107(5):1622–8.

    PubMed  PubMed Central  Google Scholar 

  23. Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol. 1999;87:1997–2006.

    CAS  PubMed  Google Scholar 

  24. Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol. 2006;575:937–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy subjects at sea level. J Physiol. 1984;355:161–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Harms CA, McClaran SR, Nickele GA, Pegelow DF, Nelson WB, Dempsey JA. Effect of exercise-induced arterial O2 desaturation on VO2max in women. Med Sci Sports Exerc. 2000;32:1101–8.

    CAS  PubMed  Google Scholar 

  27. Harms CA, Wetter TJ, St. Croix CM, Pegelow DF, Dempsey JA. Effects of respiratory muscle work on exercise performance. J Appl Physiol. 2000;89:131–8.

    CAS  PubMed  Google Scholar 

  28. Romer LM, Haverkamp HC, Lovering AT, Pegelow DF, Dempsey JA. Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2006;290:R365–75.

    CAS  PubMed  Google Scholar 

  29. Powers SK, Dodd S, Lawler J, Landry G, Kirtley M, McKnight T, Grinton S. Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol. 1988;58:298–302.

    CAS  PubMed  Google Scholar 

  30. Harms CA, McClaran SR, Nickele GA, Pegelow DF, Nelson WB, Dempsey JA. Exercise-induced arterial hypoxaemia in healthy young women. J Physiol. 1998;507:619–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harms CA, Wetter TJ, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, et al. Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J Appl Physiol. 1998;85:609–18.

    CAS  PubMed  Google Scholar 

  32. Richards JC, McKenzie DC, Warburton DER, Road JD, Sheel AW. Prevalence of exercise-induced arterial hypoxemia in healthy women. Med Sci Sports Exerc. 2004;36:1514–21.

    PubMed  Google Scholar 

  33. Eldridge MW, Dempsey JA, Haverkamp HC, Lovering AT, Hokanson JS. Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol. 2004;97:797–805.

    PubMed  Google Scholar 

  34. Hopkins SR, Barker RC, Brutsaert TD, Gavin TP, Entin P, Olfert IM, Wagner PD. Pulmonary gas exchange during exercise in women: effects of exercise type and work increment. J Appl Physiol. 2000;89:721–30.

    CAS  PubMed  Google Scholar 

  35. Guenette JA, Witt JD, McKenzie DC, Road JD, Sheel AW. Respiratory mechanics during exercise in endurance-trained men and women. J Physiol. 2007;581:1309–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hopkins SR, McKenzie DC, Schoene RB, Glenny RW, Robertson HT. Pulmonary gas exchange during exercise in athletes. I. Ventilation-perfusion mismatch and diffusion limitation. J Appl Physiol. 1994;77:912–7.

    CAS  PubMed  Google Scholar 

  37. Hopkins SR, Harms CA. Gender and pulmonary gas exchange during exercise. Exerc Sport Sci Rev. 2004;32:50–6.

    PubMed  Google Scholar 

  38. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.

    CAS  PubMed  Google Scholar 

  39. Lovering AT, Stickland MK, Amann M, O’Brien MJ, Hokanson JS, Eldridge MW. Effect of a patent foramen ovale on pulmonary gas exchange efficiency at rest and during exercise. J Appl Physiol. 2011;110:1354–61.

    PubMed  PubMed Central  Google Scholar 

  40. Stickland MK, Welsh RC, Haykowsky MJ, Petersen SR, Anderson WD, Taylor DA, et al. Intra-pulmonary shunt and pulmonary gas exchange during exercise in humans. J Physiol. 2004;561:321–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roughton FJW, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11:290–302.

    CAS  PubMed  Google Scholar 

  42. Smith JR, Rosenkranz SK, Harms CA. Dysanapsis ratio as a predictor for expiratory flow limitation. Respir Phys Neurobiol. 2014;198:25–31.

    Google Scholar 

  43. Harms CA, Stager JM. Low chemoresponsiveness and inadequate hyperventilation contribute to exercise-induced hypoxemia. J Appl Physiol. 1995;79:575–80.

    CAS  PubMed  Google Scholar 

  44. MacNutt MJ, De Souza MJ, Tomczak SE, Homer JL, Sheel AW. Resting and exercise ventilatory chemosensitivity across the menstrual cycle. J Appl Physiol. 2012;112(5):737–47.

    CAS  PubMed  Google Scholar 

  45. McClaran SR, Wetter TJ, Pegelow DF, Dempsey JA. Role of expiratory flow limitation in determining lung volumes and ventilation during exercise. J Appl Physiol. 1999;86:1357–66.

    CAS  PubMed  Google Scholar 

  46. Dempsey JA, Forster HV, Ainsworth DM. Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise. Regulation of breathing. New York: Marcel Dekker; 1995. p. 1064–134.

    Google Scholar 

  47. Johnson BD, Weisman IM, Zeballos RJ, Beck KC. Emerging concepts in the evaluation of ventilatory flow limitation during exercise: the exercise tidal-volume loop. Chest. 1999;116(2):488–503.

    CAS  PubMed  Google Scholar 

  48. Henke KG, Sharrat M, Pegelow D, Dempsey JA. Regulation of end-expiratory lung volume during exercise. J Appl Physiol. 1988;64:135–46.

    CAS  PubMed  Google Scholar 

  49. DeTroyer A, Wilson TA. Effects of acute inflation on the mechanics of the inspiratory muscles. J Appl Physiol. 2009;107:315–23.

    Google Scholar 

  50. Ainsworth DM, Smith CA, Eicker SW, Henderson KS, Dempsey JA. The effects of locomotion of respiratory muscle activity in the awake dog. Respir Physiol. 1989;78:145–62.

    CAS  PubMed  Google Scholar 

  51. Grassino AE, Derenne JP, Almirall J, Milic-Emili J, Whitelaw W. Configuration of the chest wall and occlusion pressures in the awake humans. J Appl Physiol. 1981;50:134–42.

    CAS  PubMed  Google Scholar 

  52. Sheel AW, Romer LM. Ventilation and respiratory mechanics. Comp Physiol. 2012;2:1093–142.

    Google Scholar 

  53. McParland C, Krishnan B, Lobo J, Gallagher CG. Effect of physical training on breathing pattern during progressive exercise. Respir Physiol. 1992;90:311–23.

    CAS  PubMed  Google Scholar 

  54. Cole P, Forsyth R, Haight JS. Respiratory resistance of the oral airway. Am Rev Respir Dis. 1982;125:363–5.

    CAS  PubMed  Google Scholar 

  55. England SJ, Bartlett DJ. Changes in respiratory movements of the human vocal cords during hyperpnea. J Appl Physiol. 1982;52:780–5.

    CAS  PubMed  Google Scholar 

  56. Habedank D, Reindl I, Vietzke G, et al. Ventilatory efficiency and exercise tolerance in 101 healthy volunteers. Eur J Appl Physiol Occup Physiol. 1998;77:421–6.

    CAS  PubMed  Google Scholar 

  57. Blackie SP, Fairbarn MS, McElvaney NG, et al. Normal values and ranges for ventilation and breathing pattern at maximal exercise. Chest. 1991;100:136–42.

    CAS  PubMed  Google Scholar 

  58. Sheel AW, Richards JC, Foster GE, Guenette JA. Sex difference in respiratory exercise physiology. Sports Med. 2004;34(9):567–79.

    PubMed  Google Scholar 

  59. Elridge FL, Millhorn DE, Kiley JP, Waldrop TG. Stimulation by central command of locomotion, respiration and circulation during exercise. Respir Physiol. 1985;59:313–37.

    Google Scholar 

  60. Elridge FL, Willhorn DE, Waldrop TG. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science. 1981;211:844–6.

    Google Scholar 

  61. Haouzi P. Theories on the nature of the coupling between ventilation and gas exchange during exercise. Respir Physiol Neurobiol. 2006;151:267–79.

    PubMed  Google Scholar 

  62. Phillipson EA, Duffin J, Cooper JD. Critical dependence on respiratory rhythmicity on metabolic CO2 load. J Appl Physiol. 1981;50:45–54.

    CAS  PubMed  Google Scholar 

  63. Tallman RDJ, Marcolin R, Howie M, McDonald JS, Stafford T. Cardiopulmonary response to extracorporeal venous CO2 removal in awake spontaneously breathing dogs. J Appl Physiol. 1986;61:516–22.

    PubMed  Google Scholar 

  64. Yamamoto WS, Edwards MWJ. Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J Appl Physiol. 1960;15:807–18.

    CAS  PubMed  Google Scholar 

  65. Bennett FM, Tallman RDJ, Grodin FS. Role of VCO2 in control of breathing of awake exercising dogs. J Appl Physiol. 1984;56:1335–9.

    CAS  PubMed  Google Scholar 

  66. Bisgard GE, Forster HV, Mesina J, Sarazin RG. Role of carotid body in hyperpnea of moderate exercise in goats. J Appl Physiol. 1982;52:1216–22.

    CAS  PubMed  Google Scholar 

  67. Pan JG, Forster HV, Bisgard GE, Kaminski RP, Dorsey SM, Busch MA. Hyperventilation in ponies at the onset of and during steady-state exercise. J Appl Physiol. 1983;54:1394–402.

    CAS  PubMed  Google Scholar 

  68. Asmussen E, Nielson M. Ventilatory response to CO2 during work at normal and at low oxygen tensions. Acta Physiol Scand. 1957;39:27–35.

    CAS  PubMed  Google Scholar 

  69. Weil JV, Bryne-Quinn E, Sodal IE, Kline JS, McCullough RE, Filley GF. Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol. 1972;33:813–9.

    CAS  PubMed  Google Scholar 

  70. Heigenhauser GL, Sutton JR, Jones NL. Effect of glycogen depletion on the ventilatory response to exercise. J Appl Physiol. 1983;54:470–4.

    CAS  PubMed  Google Scholar 

  71. Wasserman K, Whipp BJ, Koyal SN, Cleary MG. Effect of carotid body resection on ventilatory and acid-base control during exercise. J Appl Physiol. 1975;39:354–8.

    CAS  PubMed  Google Scholar 

  72. Jurkowski JE, Jones NL, Toews CJ, et al. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol. 1981;51:1493–9.

    CAS  PubMed  Google Scholar 

  73. Bemben DA, Salm PC, Salm AJ. Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fit. 1995;35:257–62.

    CAS  Google Scholar 

  74. Cassaza GA, Suh SH, Miller BF, et al. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93:1698–702.

    Google Scholar 

  75. De Souza MJ, Maguire MS, Rubin KR, et al. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc. 1990;22:575–80.

    PubMed  Google Scholar 

  76. Bryner RW, Toffle RCUIH, et al. Effect of low dose oral contraceptives on exercise performance. Br J Sports Med. 1996;30:36–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hackney AC, Curley CS, Nicklas BJ. Physiological responses to submaximal exercise at the mid-follicular, ovulatory, and mid-luteal phases of the menstrual cycle. Scand J Med Sci Sport. 1991;1:94–8.

    Google Scholar 

  78. Hessemer V, Bruck K. Influence of menstrual cycle on thermoregulatory, metabolic, and heart rate responses to exercise at night. J Appl Physiol. 1991;59:1911–7.

    Google Scholar 

  79. Miskec CM, Potteiger JA, Nau KL, et al. Do varying environmental and menstrual cycle conditions affect anaerobic power output in female athletes? J Strength Cond Res. 1997;11:219–23.

    Google Scholar 

  80. Babb TG, Viggiano R, Hurley B, Staats B, Rodarte JR. Effect of mild to moderate airflow limitation on exercise capacity. J Appl Physiol. 1991;70(1):223–30.

    CAS  PubMed  Google Scholar 

  81. Roussos C, Fixley M, Gross D, Macklem PT. Fatigue of inspiratory muscles and their synergic behavior. J Appl Physiol. 1979;46:897–904.

    CAS  PubMed  Google Scholar 

  82. Eltayara L, Becklake MR, Volta CA, Milic-Emili J. Relationship between chronic dyspnea and expiratory flow limitation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(6):1726–34.

    CAS  PubMed  Google Scholar 

  83. Iandelli I, Aliverti A, Kayser B, et al. Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J Appl Physiol. 2002;92(5):1943–52.

    PubMed  Google Scholar 

  84. Pellegrino R, Brusasco V, Rodarte JR, Babb TG. Expiratory flow limitation and regulation of end-expiratory lung volume during exercise. J Appl Physiol. 1993;74:2552–8.

    CAS  PubMed  Google Scholar 

  85. Collett PW, Engel LA. Influence of lung volume on oxygen cost of resistive breathing. J Appl Physiol. 1986;61:16–24.

    CAS  PubMed  Google Scholar 

  86. Guenette JA, Querido JS, Eves ND, Chua R, Sheel AW. Sex differences in the resistive and elastic work of breathing during exercise in endurance-trained athletes. Am J Physiol Regul Integr Comp Physiol. 2009;297:R166–75.

    CAS  PubMed  Google Scholar 

  87. Aaron EA, Seow KC, Johnson BD, Dempsey JA. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72:1818–25.

    CAS  PubMed  Google Scholar 

  88. Guenette JA, Vogiatzis I, Zakynthinos S, Athanasopoulos D, Koskolou M, Golemati S, Bouscel R. Human respiratory muscle blood flow measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol. 2008;104:1202–10.

    CAS  PubMed  Google Scholar 

  89. Lieberman DA, Faulkner JA, Craig AB, Maxwell LC. Performance and histochemical composition of guinea pig and human diaphragm. J Appl Physiol. 1973;34:233–7.

    CAS  PubMed  Google Scholar 

  90. Edwards RHT, Faulkner JA. Structure and function of the respiratory muscles. In: Roussos C, editor. The thorax. Part A: Physiology. New York: Marcel Dekker; 1995. p. 185–217.

    Google Scholar 

  91. Johnson BD, Babcock MA, Suman OE, Dempsey JA. Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol (London). 1993;460:385–405.

    CAS  Google Scholar 

  92. NHLBI Workshop Respiratory Muscle Fatigue. Report of the respiratory muscle fatigue workshop group. Am Rev Respir Dis. 1990;142:474–80.

    Google Scholar 

  93. Babcock MA, Pegelow DF, Harms CA, Dempsey JA. Effects of respiratory unloading on exercise-induced diaphragm fatigue. J Appl Physiol. 2002;93:201–6.

    PubMed  Google Scholar 

  94. Babcock MA, Pegelow DF, McClaran SR, Suman OE, Dempsey JA. Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol. 1995;78:1710–9.

    CAS  PubMed  Google Scholar 

  95. Fregosi RF, Dempsey JA. Effects of exercise on normoxia and acute hypoxia on respiratory muscle metabolites. J Appl Physiol. 1986;60:1274–83.

    CAS  PubMed  Google Scholar 

  96. Shindoh C, DiMarco A, Thomas A, Manubay P, Supinski G. Effect of N-acetylcysteine on diaphragm fatigue. J Appl Physiol. 1990;68:2107–13.

    CAS  PubMed  Google Scholar 

  97. Mador MJ, Magalang UJ, Rodis A, Kufel TJ. Diaphragmatic fatigue after exercise in healthy human subjects. Am Rev Respir Dis. 1993;148:1571–5.

    CAS  PubMed  Google Scholar 

  98. Fulco CS, Rock PB, Muza SR, Lammi E, Cymerman A, Butterfield G, Lewis SF. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand. 1999;167:233–9.

    CAS  PubMed  Google Scholar 

  99. Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev. 2001;29:109–12.

    CAS  PubMed  Google Scholar 

  100. Guenette JA, Romer LM, Querido JS, Chua R, Eves ND, Road JD, et al. Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained men. J Appl Physiol. 2010;109:35–46.

    PubMed  Google Scholar 

  101. Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol. 1997;82:1573–83.

    CAS  PubMed  Google Scholar 

  102. Wetter TJ, Harms CA, Nelson WB, Pegelow DF, Dempsey JA. Influence of respiratory muscle work on VO2 and leg blood flow during submaximal exercise. J Appl Physiol. 1999;87:643–51.

    CAS  PubMed  Google Scholar 

  103. Derchak PA, Sheel AW, Morgan BJ, Dempsey JA. Effect of expiratory muscle work on muscle sympathetic nerve activity. J Appl Physiol. 2002;92:1539–52.

    PubMed  Google Scholar 

  104. St. Croix CM, Morgan BJ, Wetter TJ, Dempsey JA. Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J Physiol. 2000;529:493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sheel AW, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol. 2001;537:227–89.

    Google Scholar 

  106. Romer LM, Lovering AT, Haverkamp HC, Pegelow DF, Dempsey JA. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J Physiol. 2006;571:425–39.

    CAS  PubMed  Google Scholar 

  107. Wuthrich TU, Notter DA, Spengler CM. Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigue-induced excess respiratory drive. Exp Physiol. 2013;98:1705–17.

    PubMed  Google Scholar 

  108. Mador MJ, Acevedo FA. Effect of respiratory muscle fatigue on subsequent exercise performance. J Appl Physiol. 1991;70:2059–65.

    CAS  PubMed  Google Scholar 

  109. Kivastik J, Kingisepp P. Differences in lung function and chest dimensions in school-age girls and boys. Clin Physiol. 1997;17:149–57.

    CAS  PubMed  Google Scholar 

  110. DeTroyer A, Yernault JC, Englert M, Baran D, Paiva M. Evolution of intrathoracic airway mechanics during lung growth. J Appl Physiol. 1978;44:521–7.

    CAS  Google Scholar 

  111. Loosli CG, Potter EL. Pre and postnatal development of the respiratory portion of the human lung with special reference to the elastic fibers. Am Rev Respir Dis. 1959;80:5–23.

    CAS  PubMed  Google Scholar 

  112. Swain KE, Rosenkranz SK, Beckman B, Harms CA. Expiratory flow limitation during exercise in prepubescent boys and girls: prevalence and implications. J Appl Physiol. 2010;108:1267–74.

    PubMed  Google Scholar 

  113. Wang X, Dockery DW, Wypij D, Gold DR, Speizer FE, Ware JH, Ferris BG. Pulmonary function growth velocity in children 6 to 18 years of age. Am Rev Respir Dis. 1993;148:1502–8.

    CAS  PubMed  Google Scholar 

  114. Armstrong N, Kirby BJ, McManus AM, Welsman JR. Prepubescents’ ventilatory responses to exercise with reference to sex and body size. Chest. 1997;112:1554–60.

    CAS  PubMed  Google Scholar 

  115. Knudson RJ, Clark DF, Kennedy TC, Knudson DE. Effect of aging alone on mechanical properties of the normal adult human lung. J Appl Physiol. 1977;43:1054–62.

    CAS  PubMed  Google Scholar 

  116. Bode FR, Dosman J, Martin RR, Ghezzo H, Macklem PT. Age and sex differences in lung elasticity, and in closing capacity in nonsmokers. J Appl Physiol. 1976;41:129–35.

    CAS  PubMed  Google Scholar 

  117. Johnson BD, Reddan WG, Pegelow DF, Seow KC, Dempsey JA. Flow limitation and regulation of functional residual capacity during exercise in a physically active aging population. Am Rev Respir Dis. 1991;143:960–7.

    CAS  PubMed  Google Scholar 

  118. Taylor BJ, Johnson BD. The pulmonary circulation and exercise responses in the elderly. Semin Respir Crit Care Med. 2010;31:528–38.

    PubMed  PubMed Central  Google Scholar 

  119. Wilkie SS, Guenette JA, Dominelli PB, Sheel AW. Effects of an aging pulmonary system on expiratory flow limitation and dyspnea during exercise in healthy women. Eur J Appl Physiol. 2012;112:2195–204.

    PubMed  Google Scholar 

  120. Ofir D, Laveneziana P, Webb KA, Lam YM, O’Donnell DE. Sex differences in the perceived intensity of breathlessness during exercise with advancing age. J Appl Physiol. 2008;104:1583–93.

    PubMed  Google Scholar 

  121. Johnson BD, Reddan WG, Seow KC, Dempsey JA. Mechanical constraints on exercise hyperpnea in a fit aging population. Am Rev Respir Dis. 1991;143:968–77.

    CAS  PubMed  Google Scholar 

  122. Cardius J, Burgos F, Diaz O, Roca J, Barbera JA, Marrades RM, Rodriguez-Roisin R, Wagner PD. Increase in pulmonary ventilation-perfusion inequality with age in healthy individuals. Am J Respir Crit Care Med. 1997;156:648–53.

    Google Scholar 

  123. Forster HV, Haozi P, Dempsey JA. Control of breathing during exercise. Comp Physiol. 2012;2:743–77.

    Google Scholar 

  124. Harms CA, Rosenkranz SR. Sex differences in pulmonary function during exercise. Med Sci Sports Exerc. 2008;40:664–8.

    CAS  PubMed  Google Scholar 

  125. Smith JR, Brown KR, Murphy JD, Harms CA. Does menstrual cycle phase affect lung diffusion capacity during exercise? Respir Phys Neurobiol. 2015;205:99–104.

    Google Scholar 

  126. Williams, TJ, Krahenbuhl, GS. Menstrual cycle phase and running economy. Medicine and Science in Sport and Exercise. 1997;29:1609–1618.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Harms PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harms, C.A., Smith, J.R., Kurti, S.P. (2016). Sex Differences in Normal Pulmonary Structure and Function at Rest and During Exercise. In: Hemnes, A. (eds) Gender, Sex Hormones and Respiratory Disease. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-23998-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23998-9_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-23996-5

  • Online ISBN: 978-3-319-23998-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics