Skip to main content

A Unified Approach to Percolation Processes on Multiplex Networks

  • Chapter
  • First Online:
Interconnected Networks

Abstract

Many real complex systems cannot be represented by a single network, but due to multiple sub-systems and types of interactions, must be represented as a multiplex network. This is a set of nodes which exist in several layers, with each layer having its own kind of edges, represented by different colors. An important fundamental structural feature of networks is their resilience to damage, the percolation transition. Generalization of these concepts to multiplex networks requires careful definition of what we mean by connected clusters. We consider two different definitions. One, a rigorous generalization of the single-layer definition leads to a strong non-local rule, and results in a dramatic change in the response of the system to damage. The giant component collapses discontinuously in a hybrid transition characterized by avalanches of diverging mean size. We also consider another definition, which imposes weaker conditions on percolation and allows local calculation, and also leads to different sized giant components depending on whether we consider an activation or pruning process. This ‘weak’ process exhibits both continuous and discontinuous transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Bootstrap percolation on complex networks. Phys. Rev. E 82, 011103 (2010)

    Article  ADS  Google Scholar 

  2. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Heterogeneous k-core versus bootstrap percolation on complex networks. Phys. Rev. E 83(5), 051134 (2011)

    Article  ADS  Google Scholar 

  3. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanche collapse of interdependent networks. Phys. Rev. Lett. 109, 248701 (2012)

    Article  ADS  Google Scholar 

  4. Baxter, G.J., Dorogovtsev, S.N., Mendes, J.F.F., Cellai, D.: Weak percolation on multiplex networks. Phys. Rev. E 89, 042801 (2014)

    Article  ADS  Google Scholar 

  5. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanches in multiplex and interdependent networks. In: D’Agostino, G., Scala, A. (eds.) Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems, pp. 37–52. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  6. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic casdade of failures in interdependent networks. Nature 464, 08932 (2010)

    Article  Google Scholar 

  8. Caccioli, F., Shrestha, M., Moore, C., Doyne Farmer, J.: Stability analysis of financial contagion due to overlapping portfolios (2012). arXiv:1210.5987

    Google Scholar 

  9. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C 12, L31 (1979)

    Article  ADS  Google Scholar 

  10. Cohen, R., ben Avraham, D., Havlin, S.: Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002)

    Google Scholar 

  11. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: k-core organisation of complex networks. Phys. Rev. Lett. 96, 040601 (2006)

    Google Scholar 

  12. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008)

    Article  ADS  Google Scholar 

  13. Dueñas, L., Cragin, J.I., Goodno, B.J.: Seismic response of critical interdependent networks. Earthq. Eng. Struct. Dyn. 36, 285–306 (2007)

    Article  Google Scholar 

  14. Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)

    Article  ADS  Google Scholar 

  15. Huang, X., Vodenska, I., Havlin, S., Stanley, H.E.: Cascading failures in bi-partite graphs: model for systemic risk propagation. Sci. Rep. 3, 1219 (2013)

    ADS  Google Scholar 

  16. Leicht, E.A., D’Souza, R.M.: Percolation on interacting networks (2009). arXiv:0907.0894

    Google Scholar 

  17. Min, B., K.-I. Goh.: Multiple resource demands and viability in multiplex networks. Phys. Rev. E 89, 040802(R) (2014)

    Google Scholar 

  18. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  19. Pocock, M.J.O., Evans, D.M., Memmott, J.: The robustness and restoration of a network of ecological networks. Science 335, 973–976 (2012)

    Article  ADS  Google Scholar 

  20. Poljans̆ek, K., Bono, F., Gutiérrez, E.: Seismic risk assessment of interdependent critical infrastructure systems: the case of European gas and electricity networks. Earthq. Eng. Struct. Dyn. 41, 61–79 (2012)

    Google Scholar 

  21. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21, 11–25 (2001)

    Article  Google Scholar 

  22. Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation theory on interdependent networks based on epidemic spreading. EPL 97, 16006 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the FET IP Project MULTIPLEX 317532 and by the FCT projects EXPL/FIS-NAN/1275/2013 and PEst-C/CTM/LA0025/2011, and post-doctoral fellowship SFRH/BPD/74040/2010, Science Foundation Ireland, Grant No. 11/PI/1026 and the FET-Proactive project PLEXMATH (FP7-ICT-2011-8; Grant No. 317614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth J. Baxter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baxter, G.J., Cellai, D., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F. (2016). A Unified Approach to Percolation Processes on Multiplex Networks. In: Garas, A. (eds) Interconnected Networks. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23947-7_6

Download citation

Publish with us

Policies and ethics